机械工程

用于信号盲提取的最大三阶相关峭度反卷积算法

展开
  • 1.华南理工大学 机械与汽车工程学院,广东 广州 510640;2.云南民族大学 无线传感器网络云南省高校重点实验室,云南 昆明 650031
杨光永(1970-),男,在职博士生,云南民族大学副教授,主要从事传感器技术、数字信号处理及运动控制研究.

收稿日期: 2013-07-16

  修回日期: 2013-09-07

  网络出版日期: 2013-12-01

基金资助

国家自然科学基金资助项目(61262091);无线传感器网络云南省高校重点实验室开放基金资助项目(ZK2011002)

Maximum 3- Shift Correlated Kurtosis Deconvolution Algorithm for Blind Extraction of Signals

Expand
  • 1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;2.Key Laboratory on Wireless Sensor Network of Colleges and Universities of Yunnan Province,Yunnan University of Nationalities,Kunming 650031,Yunnan,China
杨光永(1970-),男,在职博士生,云南民族大学副教授,主要从事传感器技术、数字信号处理及运动控制研究.

Received date: 2013-07-16

  Revised date: 2013-09-07

  Online published: 2013-12-01

Supported by

国家自然科学基金资助项目(61262091);无线传感器网络云南省高校重点实验室开放基金资助项目(ZK2011002)

摘要

传统的低阶自适应滤波器难以抑制或消除激光位移信号的高阶统计噪声,且在微位移测量条件下,基于最大熵或自然梯度的盲源分离方法的收敛速度和信噪比会急剧降低.为此,文中利用混合信号的峭度变化特性,提出了最大三阶相关峭度反卷积算法,设计了反卷积逆滤波器,分析了最大三阶相关峭度反卷积算法的收敛性和稳定条件,并构建了实验平台进行盲提取实验.结果表明,最大三阶相关峭度反卷积算法可有效地盲提取激光位移信号和多重反射信号,较 FastICA 算法具有更快的收敛速度和更高的信噪比.

本文引用格式

杨光永 胡国清 陈乐 吴海峰 宋佳声 . 用于信号盲提取的最大三阶相关峭度反卷积算法[J]. 华南理工大学学报(自然科学版), 2014 , 42(1) : 47 -51,58 . DOI: 10.3969/j.issn.1000-565X.2014.01.009

Abstract

The traditional low- order adaptive filter is inefficient in suppressing or eliminating the higher- order statis-tical noises of laser displacement signals,and the convergence speed as well as the SNR (Signal- to- Noise Ratio) ofblind source separation based on the maximum entropy or the natural gradient may remarkably decrease under mi-cro- displacement measurement conditions.In order to solve these problems,a maximum 3- shifted correlated kurto-sis deconvolution (M3CKD) algorithm is presented on the basis of the kurtosis variation of mixed signals,and thecorresponding inverse filter is designed.Moreover,the convergence and stability conditions of the algorithm areanalyzed,and a blind extraction is carried out on a constructed experiment platform.The results indicate that theproposed algorithm is efficient in the blind extraction of laser displacement signals and multiple reflection signals,and that it outperforms the FastICA algorithm due to its high convergence speed and large signal- to- noise ratio.

文章导航

/