电子、通信与自动控制

基于最小类内方差的蛇形机器人多阈值分割

展开
  • 1.华南理工大学 自动化科学与工程学院,广东 广州 510640; 2.中国地质大学 机械与电子信息学院,湖北 武汉 430074
魏武(1970-),男,博士,教授,主要从事机器人控制、模式识别与人工智能等研究.

收稿日期: 2012-09-07

  修回日期: 2013-01-08

  网络出版日期: 2013-04-01

基金资助

交通运输部科技项目( 201131849A400)

Multi-Threshold Segmentation of Snake-Like Robot Based on Minimum Interclass Variance

Expand
  • 1.School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;2.Faculty of Mechanical & Electronic Information,China University of Geosciences,Wuhuan 430074,Hubei,China
魏武(1970-),男,博士,教授,主要从事机器人控制、模式识别与人工智能等研究.

Received date: 2012-09-07

  Revised date: 2013-01-08

  Online published: 2013-04-01

Supported by

交通运输部科技项目( 201131849A400)

摘要

针对传统最小类内方差分割方法计算量大、效率低、单阈值分割、不能多目标分割的缺点,提出了一种改进的基于最小类内方差的蛇形机器人多阈值分割方法.通过提取整幅图像的感兴趣区域( ROI) ,有效减小算法搜索的范围和整体计算量; 根据直方图的多峰值特点,把ROI 区域划分成多个子区域,采用改进的最小类内方差分割法搜索各个局部最优阈值,最终实现蛇形机器人关节组的多阈值分割.实验结果表明,该方法分割效率高,分割效果明显,且在保证实时性的同时提高了目标识别对光线变化的鲁棒性,降低了对步态变化的敏感性.

本文引用格式

魏武 姜莉 王新梅 . 基于最小类内方差的蛇形机器人多阈值分割[J]. 华南理工大学学报(自然科学版), 2013 , 41(5) : 9 -14 . DOI: 10.3969/j.issn.1000-565X.2013.05.002

Abstract

In order to remove the drawbacks of the traditional single-threshold segmentation methods,namely heavycomputational burden,low efficiency and incapability of multi-target segmentation,an improved multi-thresholdsegmentation method of the snake-like robot is proposed based on the minimum interclass variance ( MIV) .In thismethod,first,the ROI ( Region of Interest) of the whole image is extracted to effectively reduce the search scopeand hence lighten the computational burden.Then,according to the multi-peak characteristics of histograms,the ROI is divided into multiple sub-regions,and the local optimal thresholds of the sub-regions are obtained by meansof the MIV segmentation.Thus,the multi-threshold segmentation of the joint groups of the snake-like robot issuccessfully implemented.Experimental results indicate that the proposed method is of high segmentation efficiency,good segmentation effect,constant real-time performance,stronger target recognition robustness to light intensitychange and lower sensitivity to gait change.

文章导航

/