华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (9): 116-122.

• 电子、通信与自动控制 • 上一篇    下一篇

基于时空熵分析的组合高斯背景建模方法

宋佳声 胡国清   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2011-09-23 修回日期:2012-06-25 出版日期:2012-09-25 发布日期:2012-08-01
  • 通信作者: 宋佳声(1976-) ,男,在职博士生,集美大学讲师,主要从事图像处理与模式识别研究. E-mail:songjs@ gmail.com
  • 作者简介:宋佳声(1976-) ,男,在职博士生,集美大学讲师,主要从事图像处理与模式识别研究.
  • 基金资助:

    国家自然科学基金资助项目( 50875177)

Combinational Gaussian Background Modeling Method Based on Analysis of Spatio-Temporal Entropy

Song Jia-sheng  Hu Guo-qing   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2011-09-23 Revised:2012-06-25 Online:2012-09-25 Published:2012-08-01
  • Contact: 宋佳声(1976-) ,男,在职博士生,集美大学讲师,主要从事图像处理与模式识别研究. E-mail:songjs@ gmail.com
  • About author:宋佳声(1976-) ,男,在职博士生,集美大学讲师,主要从事图像处理与模式识别研究.
  • Supported by:

    国家自然科学基金资助项目( 50875177)

摘要: 为提高视频监控系统中背景高斯模型的更新速度,提出了场景运动复杂度的概念和计算方法,并在此基础上提出了一种组合高斯背景建模方法: 根据像素的时空模型分析场景运动的复杂性并计算出场景的熵值图,按照最大熵阈值将熵值图分割为稳定区域和动态区域,然后在不同的区域采用不同的高斯模型及相应的更新算法.利用该方法对384 像素× 288 像素视频文件进行前景分割,结果表明,该方法能有效地分割运动目标,具有较快的更新速度.

关键词: 背景建模, 时空熵, 高斯分布, 组合高斯模型, 前景分割

Abstract:

In order to increase the update speed of Gaussian models for the background in video surveillance systems,the concept and computation method of the scene moving complexity are devised,according to which a combinational Gaussian background modeling method is devised. In this method, according to the spatio-temporal model of pixels,the scene moving complexity is analyzed and the entropy image of the scene is calculated. Then,this image is segmented into the stable region and the dynamic region by means of the maximum entropy threshold. In the two different regions,two different Gaussian models and corresponding updating algorithms are respectively adopted. Finally,the devised method is used to implement the foreground segmentation of the video sequences with a size of 384 × 288 pixels. The results show that the devised method is of a greater update speed for the background model and can effectively segment moving objects.

Key words: background modeling, spatio-temporal entropy, Gaussian distribution, combinational Gaussian model, foreground segmentation

中图分类号: