华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (6): 48-55.

• 电子、通信与自动控制 • 上一篇    下一篇

基于概率神经网络的锋电位实时分类算法

祝晓平1 韩业强1 郝耀耀2 王东2 陈耀武1†   

  1. 1.浙江大学 生物医学工程与仪器科学学院,浙江 杭州 310027;2.浙江大学 求是高等研究院,浙江 杭州 310027
  • 收稿日期:2011-12-30 修回日期:2012-02-28 出版日期:2012-06-25 发布日期:2012-05-03
  • 通信作者: 陈耀武(1963-) ,男,教授,博士生导师,从事智能技术与嵌入式系统、脑- 机接口信号处理与并行系统的研究.E-mail: cyw@mail.bme.zju.edu.cn E-mail:zxp@ zju.edu.cn
  • 作者简介:祝晓平(1982-) ,男,博士生,主要从事并行计算和并行系统研究.
  • 基金资助:

    国家自然科学基金资助项目( 61001172) ; 浙江省自然科学基金资助项目( Y2090707) ; 浙江大学中央高校基本科研业务费专项资金资助项目( 2010QNA5026)

Real-Time Sorting Algorithm of Spike Potentials Based on Probabilistic Neural Network

Zhu Xiao-pingHan Ye-qiangHao Yao-yaoWang DongChen Yao-wu1   

  1. 1. College of Biomedical Engineering and Instrument Science,Zhejiang University,Hangzhou 310027,Zhejiang,China;
    2. Qiushi Academy for Advanced Studies,Zhejiang University,Hangzhou 310027,Zhejiang,China
  • Received:2011-12-30 Revised:2012-02-28 Online:2012-06-25 Published:2012-05-03
  • Contact: 陈耀武(1963-) ,男,教授,博士生导师,从事智能技术与嵌入式系统、脑- 机接口信号处理与并行系统的研究.E-mail: cyw@mail.bme.zju.edu.cn E-mail:zxp@ zju.edu.cn
  • About author:祝晓平(1982-) ,男,博士生,主要从事并行计算和并行系统研究.
  • Supported by:

    国家自然科学基金资助项目( 61001172) ; 浙江省自然科学基金资助项目( Y2090707) ; 浙江大学中央高校基本科研业务费专项资金资助项目( 2010QNA5026)

摘要: 为了实现便携式实时处理的实用型脑-机接口( BMI) ,提出了一种基于概率神经网络( PNN) 的锋电位信号实时分类算法,并完成了该算法基于现场可编程门阵列( FPGA)的实现.该算法通过训练数据的快速导入完成PNN 的训练,再由PNN 实现锋电位的分类工作.文中通过调用FPGA 片上DSP48Es 资源实现单精度浮点的乘加运算,采用并行流水结构加速向量间距离的计算,通过查找表和坐标旋转数字计算方法完成PNN 激活函数的准确逼近.实验结果表明,在完成高达93.82% 准确率的情况下,基于FPGA 的PNN 实现方法比基于Matlab 的方法快47.43 倍,达到了便携式实时处理的设计要求.

关键词: 脑-机接口, 锋电位, 分类算法, 神经网络, 现场可编程门阵列

Abstract:

In order to develop a portable brain-machine interface ( BMI) for practical real-time applications,a realtime sorting algorithm of spike potentials based on the probabilistic neural network ( PNN) is proposed and is implemented on the FPGA ( Field Programmable Gate Array) . In this algorithm,the network is trained via the quick loading of training data,and the spike potentials are sorted out through the trained network. In the FPGA architecture,a floating-point multiply-add operation is implemented by a on-chip DSP48Es; the calculation of vector distance is accelerated by adopting a pipelined parallel architecture; and the lookup table as well as the CORDIC ( Coordinate Rotation Digital Computer) method is employed to achieve an accurate approximation of the PNN activation function. Experimental results show that the FPGA-based implementation of PNN runs 47.43 times faster than the Matlab-based one with the same accuracy being up to 93.82%,which means that the portability and the real-time processing of BMI are successfully realized.

Key words: brain-machine interface, spike potential, sorting algorithm, neural network, field programmable gate array