华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (3): 88-93.

• 电子、通信与自动控制 • 上一篇    下一篇

基于增量学习的关节式目标跟踪算法

赵运基 裴海龙   

  1. 华南理工大学 自主系统与网络控制教育部重点实验室//自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2011-08-23 修回日期:2011-11-11 出版日期:2012-03-25 发布日期:2012-02-01
  • 通信作者: 赵运基(1980-) ,男,博士生,主要从事目标跟踪与视觉导航研究. E-mail:auzhaoyunji@163.com
  • 作者简介:赵运基(1980-) ,男,博士生,主要从事目标跟踪与视觉导航研究.
  • 基金资助:

    国家自然科学基金重点项目( 60736024, 60574004, 61174053) ; 教育部科技创新工程重大项目( 7080690)

Articulated Object Tracking Algorithm Based on Incremental Learning

Zhao Yun-ji  Pei Hai-long   

  1. Key Laboratory of Autonomous Systems and Networked Control of the Ministry of Education//School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2011-08-23 Revised:2011-11-11 Online:2012-03-25 Published:2012-02-01
  • Contact: 赵运基(1980-) ,男,博士生,主要从事目标跟踪与视觉导航研究. E-mail:auzhaoyunji@163.com
  • About author:赵运基(1980-) ,男,博士生,主要从事目标跟踪与视觉导航研究.
  • Supported by:

    国家自然科学基金重点项目( 60736024, 60574004, 61174053) ; 教育部科技创新工程重大项目( 7080690)

摘要: 为实现对关节式目标的稳定跟踪,提出了基于增量学习的关节式目标跟踪算法.该算法应用图割法对目标矩形窗进行前景与背景分割,得到前景图像; 然后对前景图像进行快速傅里叶变换,得到傅里叶系数矩阵,进而得到振幅图像,并将振幅图像作为跟踪目标的描述; 最后将多个目标描述进行奇异值分解和主元分析,实现对跟踪目标的低维子空间描述. 文中在粒子滤波框架下实现了整个跟踪算法. 实验结果表明,该算法具有较稳定的关节式目标跟踪效果.

关键词: 目标跟踪, 增量学习, 子空间描述, 快速傅立叶变换, 奇异值分解, 粒子滤波

Abstract:

In order to realize stable articulated object tracking,an algorithm based on incremental learning is proposed. In this algorithm,the graph-cut algorithm is used to obtain a foreground image by segmenting the rectangular object region,and a fast Fourier transform is conducted for the foreground image to obtain the Fourier coefficient matrix and to further acquire the amplitude image as the description of the tracking object. Then,the low-dimension subspace representation of the tracking object is obtained by the singular value decomposition and the principle component analysis of the amplitude image. Thus,the tracking algorithm is realized in the framework of particle filtering. Experimental results indicate that the proposed algorithm helps to achieve stable articulated object tracking.

Key words: object tracking, incremental learning, subspace representation, fast Fourier transforms, singular value decomposition, particle filtering

中图分类号: