华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (7): 83-87.doi: 10.3969/j.issn.1000-565X.2011.07.014

• 电子、通信与自动控制 • 上一篇    下一篇

基于NSCT 和伪Zernike 矩的人脸识别

刘晓山 杜明辉 曾春艳 金连文   

  1. 华南理工大学 电子与信息学院,广东 广州 510640
  • 收稿日期:2010-10-21 修回日期:2010-12-19 出版日期:2011-07-25 发布日期:2011-06-03
  • 通信作者: 刘晓山(1978-) ,男,博士生,主要从事图像处理、模式识别研究. E-mail:xsliu@163.com
  • 作者简介:刘晓山(1978-) ,男,博士生,主要从事图像处理、模式识别研究.
  • 基金资助:

    NSFC-广东省自然科学联合基金资助项目( U0735004)

Face Recognition Based on NSCT and Pseudo-Zernike Moment

Liu Xiao-shan  Du Ming-hui  Zeng Chun-yan  Jin Lian-wen   

  1. School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2010-10-21 Revised:2010-12-19 Online:2011-07-25 Published:2011-06-03
  • Contact: 刘晓山(1978-) ,男,博士生,主要从事图像处理、模式识别研究. E-mail:xsliu@163.com
  • About author:刘晓山(1978-) ,男,博士生,主要从事图像处理、模式识别研究.
  • Supported by:

    NSFC-广东省自然科学联合基金资助项目( U0735004)

摘要: 为了提高光照条件下人脸识别系统的识别率,提出了一种非下采样Contourlet 变换和伪Zernike 矩相结合的人脸识别新算法.该算法首先利用软阈值去噪方法在Lambertian光照模型中提取人脸的光照不变成分,然后计算其伪Zernike 矩向量作为人脸的分类特征.在Extended YaleB 和CMU PIE 人脸库上的实验结果表明,与常用的人脸识别算法相比,文中算法能够更有效地去除光照影响,适应尺度和姿态变化,极大地提高了人脸识别的精度.

关键词: 人脸识别, 非下采样Contourlet 变换, 伪Zernike 矩, 光照模型

Abstract:

In order to improve the face recognition rate under varying lighting conditions,a novel face recognition algorithm based on the nonsubsampled Contourlet transform and the pseudo-Zernike moment is proposed. In this algorithm,first,invariant illumination components are extracted via the soft-threshold denoising in the Lambertian illumination model. Then,the corresponding pseudo-Zernike moment vectors are calculated and are used as face classification features. Experimental results on Extended YaleB and CMU PIE face databases show that,as compared with the common face recognition algorithms,the proposed algorithm can eliminate the effect of illumination more effectively and adapt to the variation of scale and pose,so that it significantly improves the accuracy of face recognition.

Key words: face recognition, nonsubsampled Contourlet transform, pseudo-Zernike moment, illumination model