华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (7): 156-162.doi: 10.3969/j.issn.1000-565X.2011.07.026

• 计算机科学与技术 • 上一篇    下一篇

基于谱聚类和多示例学习的图像检索方法

李展1 彭进业1,2 温超1   

  1.  1.西北大学 信息科学与技术学院,陕西 西安 710069; 2.西北工业大学 电子信息学院,陕西 西安 710072
  • 收稿日期:2010-08-18 修回日期:2011-01-11 出版日期:2011-07-25 发布日期:2011-06-03
  • 通信作者: 李展(1973-) ,男,博士,讲师,从事图像检索、机器学习研究. E-mail:lizhan@nwu.edu.cn
  • 作者简介:李展(1973-) ,男,博士,讲师,从事图像检索、机器学习研究.
  • 基金资助:

    教育部新世纪优秀人才支持计划项目( NCET-07-0693) ; 陕西省教育厅科学研究计划项目( 10JK852)

Image Retrieval Based on Spectral Clustering and Multiple Instance Learning

Li ZhanPeng Jin-ye1,2  Wen Chao1   

  1. 1. School of Information and Technology,Northwest University,Xi’an 710069,Shaanxi,China; 2. School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,Shaanxi,China
  • Received:2010-08-18 Revised:2011-01-11 Online:2011-07-25 Published:2011-06-03
  • Contact: 李展(1973-) ,男,博士,讲师,从事图像检索、机器学习研究. E-mail:lizhan@nwu.edu.cn
  • About author:李展(1973-) ,男,博士,讲师,从事图像检索、机器学习研究.
  • Supported by:

    教育部新世纪优秀人才支持计划项目( NCET-07-0693) ; 陕西省教育厅科学研究计划项目( 10JK852)

摘要: 针对基于对象的图像检索问题,提出一种新的谱聚类多示例学习算法.该算法将图像当作包,将分割区域的视觉特征当作包中的示例,针对正包示例集合进行谱聚类,按聚类中心点数最大原则选择潜在正示例中心和潜在正示例代表,并采用径向基函数和金字塔核分别度量潜在正示例间和其它示例间的相似性,最后利用支持向量机和相关反馈实现图像检索.采用SIVAL 图像集进行的对比实验表明,该方法是有效的.

关键词: 图像检索, 多示例学习, 谱聚类, 金字塔核

Abstract:

Proposed in this paper is a novel algorithm based on the spectral clustering and the multiple instance learning,which is applied to the object-based image retrieval. In this algorithm,first,the whole image is regarded as a bag and the visual features of the segmented region are regarded as instances. Next,the spectral clustering of the instance set of positive bags is performed according to the principle of maximum the clustering center number to select the potential center and the representation of positive instance. Then,the radial basis function ( RBF) and the pyramid match kernel ( PMK) are respectively used to measure the similarities of the potential positive instances and other instances in bags. Finally,the support vector machine and the relevance feedback are adopted to retrieve images. Experimental results of the SIVAL image set show that the proposed algorithm is an effective solution to the object-based image retrieval.

Key words: image retrieval, multiple instance learning, spectral clustering, pyramid match kernel