华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (9): 123-127.

• 化学化工 • 上一篇    下一篇

H2S含量及流量对燃料电池性能的影响

钟理1  Chuang Karl2   

  1. 1. 华南理工大学 化学与化工学院, 广东 广州 510640; 2. 阿伯塔大学 化学工程与材料工程系, 加拿大 阿伯塔埃蒙顿 T6G2G6
  • 收稿日期:2008-09-18 修回日期:2008-12-11 出版日期:2009-09-25 发布日期:2009-09-25
  • 通信作者: 钟理(1956-),男,教授,博士生导师,主要从事化学工艺及清洁生产研究. E-mail:celzhong@scut.edu.cn
  • 作者简介:钟理(1956-),男,教授,博士生导师,主要从事化学工艺及清洁生产研究.
  • 基金资助:

    广东省自然科学基金资助项目(9152902001000005)

Influences of H2S Content and Flowrate on Performance of Fuel Cells

Zhong Li1  Chuang Karl2   

  1. 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, 2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2G6, Alberta, Canada
  • Received:2008-09-18 Revised:2008-12-11 Online:2009-09-25 Published:2009-09-25
  • Contact: 钟理(1956-),男,教授,博士生导师,主要从事化学工艺及清洁生产研究. E-mail:celzhong@scut.edu.cn
  • About author:钟理(1956-),男,教授,博士生导师,主要从事化学工艺及清洁生产研究.
  • Supported by:

    广东省自然科学基金资助项目(9152902001000005)

摘要: 采用溶胶-凝胶法制备了纳米级Li2SO 4+Li2WO 4+Al2O3复合质子传导膜,考察了在不同H2S气体含量、体积流量和操作温度下,结构为H2S、(复合MoS2阳极催化剂)/复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池的电化学特性,并比较了MoS2与复合MoS2催化剂的性能.结果表明:H2S含量和体积流量增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的电压、输出电流与功率密度提高,电化学性能变好;即使气体中的H2S含量低达5%(摩尔分数)时,也可作为电池的燃料用来发电;操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高;复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性;当采用纯H2S作为燃料,复合MoS2作为阳极催化剂,通入阳极和阴极侧的H2S和空气的体积流量分别为35mL/min和100mL/min,操作温度为650、700和750℃时,燃料电池最大输出功率密度分别为12.4、52.9和130.0mW/cm2,最大电流密度分别为45、281和350mA/cm2.

关键词: 燃料电池, 硫化氢, 质子传导膜, 阳极催化剂, 电解质

Abstract:

Nano-sized composite proton-conducting membrane of Li2SO 4+Li2WO 4+Al2O3was prepared via the sol-gel method,and the electrochemical performance of the fuel cell with the configuration of H2S,(composite MoS2 anode catalyst)/composite proton-conducting membrane/(composite NiO cathode catalyst),air was investigated at various H2S content,volume flowrate and operation temperature.Moreover,the performances of MoS2 and composite MoS2 anode catalysts were analyzed by comparison.Experimental results show that the voltage, output current and power density of the fuel cell all increase with H2S content and flowrate in the gas mixture due to the improvement of gas diffusion in the anode and due to the increase in the concentration of anodic electroactive species. Thus, the electrochemical performance of the fuel cell becomes better. It is also indicated that, even if the H2S content is less than 5% (mole fraction), H2S can also be used as the fuel for power generation, that not only the electrical conductivity and electrochemical reaction rate of the proton-conducting membrane but also the output current and power density of the fuel cell increase with the temperature, that the composite MoS2 anode catalyst is superior to the MoS2 anode catalyst in terms of performance and chemical stability, and that, when pure H2S with a flowrate of 35 mL/min is input in the anode compartment and the air with a flowrate of 100mL/min is input in the cathode compartment, the fuel cell with composite MoS2 anode catalyst is of the maximum power densities up to 12.4, 52.9 and 130mW/cm2 and the maximum current densities up to 45, 281 and 350mA/cm2 respectively at 650, 700 and 750 ℃.

Key words: fuel cell, hydrogen sulfide, proton-conducting membrane, anode catalyst, electrolyte