华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (9): 88-92.

• 机械工程 • 上一篇    下一篇

基于支持向量回归机的焊缝偏差识别方法

曾松盛 石永华 王国荣   

  1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640
  • 收稿日期:2008-09-22 修回日期:2008-11-27 出版日期:2009-09-25 发布日期:2009-09-25
  • 通信作者: 曾松盛(1966-),男,博士,高级工程师,主要从事材料加工与自动化研究. E-mail:zsscsu@sina.com
  • 作者简介:曾松盛(1966-),男,博士,高级工程师,主要从事材料加工与自动化研究.
  • 基金资助:

    国家自然科学基金资助项目(50705030)

Identification Method of Welding Seam Offset Based on Support Vector Regression Machine

Zeng Song-sheng  Shi Yong-hua  Wang Guo-rong   

  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-09-22 Revised:2008-11-27 Online:2009-09-25 Published:2009-09-25
  • Contact: 曾松盛(1966-),男,博士,高级工程师,主要从事材料加工与自动化研究. E-mail:zsscsu@sina.com
  • About author:曾松盛(1966-),男,博士,高级工程师,主要从事材料加工与自动化研究.
  • Supported by:

    国家自然科学基金资助项目(50705030)

摘要: 为了提高焊缝偏差识别精度,首先对基于旋转电弧传感的焊接电流信号进行小波滤波,预处理后构建样本数据集.然后建立基于支持向量回归机的Laplace特征映射外延算法,对样本数据集和新样本进行维数约简,利用维数约简后的样本数据集训练支持向量回归机,并对新样本进行偏差识别.最后与不进行维数约简而是直接利用支持向量回归机进行偏差识别的方法进行对比试验.结果表明,利用特征映射进行维数约简能使焊缝偏差识别的精度平均提高25%.

关键词: 焊缝, 偏差识别, 小波滤波, Laplace特征映射, 外延算法, 支持向量回归机

Abstract:

In order to improve the identification precision of welding seam offset,first,the welding current signals based on the rotational arc sensor are filtered by wavelet,followed by the reconstruction of a sample data set via the pretreatment.Next,an extension algorithm of Laplace feature mapping is proposed based on the support vector regression(SVR) machine,which is applied to the dimensionality reduction of the sample data set and the new sample.Then,the sample data set after the dimensionality reduction is used to train the SVR machine and identify the offset for the new sample. Finally, the proposed identification method is compared with the traditional method without dimensionality reduction. Experimental results indicate that the dimensionality reduction based on Laplace feature mapping may result in an average increase of identification precision by 25 %.

Key words: welding seam, offset identification, wavelet filtering, Laplace feature mapping, extension algorithm, support vector regression machine