华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (3): 133-137,142.doi: 10.3969/j.issn.1000-565X.2010.03.024

• 机械工程 • 上一篇    下一篇

求解混流装配线调度的疫苗共生克隆选择算法

刘冉楼佩煌唐敦兵杨雷2   

  1. 1.南京航空航天大学 机电学院,江苏 南京 210016;2.江苏天奇物流系统工程股份有限公司,江苏 无锡 214187
  • 收稿日期:2009-04-10 修回日期:2009-06-22 出版日期:2010-03-25 发布日期:2010-03-25
  • 通信作者: 刘冉(1983-),女,博士生,主要从事企业信息化、优化设计研究. E-mail:nuaa—summer@hotmail.com
  • 作者简介:刘冉(1983-),女,博士生,主要从事企业信息化、优化设计研究.
  • 基金资助:

    霍英东教育基金会青年教师基金资助项目(111056);江苏省重大科技成果转化专项资金项目(BA2007034);江
    苏省高校科技成果产业化推进项目(JH07—005);教育部“新世纪优秀人才支持计划”资助项El(NCET080703)

A Vaccine-Symbiosis Clonal Selection Algorithm for Mixed-Model Scheduling on Assembly Lines

Liu RanLou Pel-huangTang Dun-bingYang Lei2   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; 2. Jiangsu Miracle Logistics, Wuxi 214187, Jiangsu, China
  • Received:2009-04-10 Revised:2009-06-22 Online:2010-03-25 Published:2010-03-25
  • Contact: 刘冉(1983-),女,博士生,主要从事企业信息化、优化设计研究. E-mail:nuaa—summer@hotmail.com
  • About author:刘冉(1983-),女,博士生,主要从事企业信息化、优化设计研究.
  • Supported by:

    霍英东教育基金会青年教师基金资助项目(111056);江苏省重大科技成果转化专项资金项目(BA2007034);江
    苏省高校科技成果产业化推进项目(JH07—005);教育部“新世纪优秀人才支持计划”资助项El(NCET080703)

摘要: 针对混流装配线多目标调度优化问题,提出了一种疫苗协同进化的多目标免疫克隆选择优化算法。设计了疫苗种群及其相关操作,使其跟抗体种群相互影响并协同进化,提高了算法的性能;针对调度优化问题的离散性,选择同时从抗体的基因型和表现型评价抗体亲和度;依据抗体质量和进化代数,设计了自适应变异率;在每次迭代过程中,多次局部寻优,加快算法收敛速度。最后通过两组实例仿真,与另三种多目标优化算法比较,结果证明了该算法得到了更好的计算结果。

关键词: 疫苗, 协同进化, 克隆选择, 多目标优化, 混流装配线

Abstract:

In order to solve the scheduling optimization problem in mixed-model assembly lines, a multi-objective vaccine eoevolution elonal selection algorithm is proposed, and the vaccine population and the corresponding popu- lation operations are designed to interact and coevolve with the antibody population, thus greatly improving the per- formance of the algorithm. Then, according to the discrete feature of the scheduling optimization problem, the anti- body affinity is evaluated from the phenotype and the genotype. Moreover, according to the antibody quality and the evolutionary generations, the adaptive mutation rate is designed, and multiple local optimizations are executed in each iteration process to improve the convergence rate of the algorithm. The results of two series of experiments show that, as compared with other three multi-objective optimization algorithms, the proposed algorithm is of high efficiency and superiority.

Key words: mixed-model assembly line, multi-objective optimization, vaccine, coevolution, clonal selection