华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (2): 45-48.

• 机械工程 • 上一篇    下一篇

基于小波Elman神经网络的活塞环渗氮质量预测控制

杨杰 刘桂雄   

  1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640
  • 收稿日期:2008-09-27 修回日期:2008-11-03 出版日期:2009-02-25 发布日期:2009-02-25
  • 通信作者: 杨杰(1974-),男,讲师,博士生,主要从事现代检测与故障诊断技术研究. E-mail:jiextx@yahoo.com.cn
  • 作者简介:杨杰(1974-),男,讲师,博士生,主要从事现代检测与故障诊断技术研究.
  • 基金资助:

    广东省科技计划项目(2005810201039);广州市科技计划项目(200723-D0141)

Quality Prediction and Control of Piston Rings Nitriding Based on Wavelet Transform and Elman Neural Network

Yang Jie  Liu Gui-xiong   

  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-09-27 Revised:2008-11-03 Online:2009-02-25 Published:2009-02-25
  • Contact: 杨杰(1974-),男,讲师,博士生,主要从事现代检测与故障诊断技术研究. E-mail:jiextx@yahoo.com.cn
  • About author:杨杰(1974-),男,讲师,博士生,主要从事现代检测与故障诊断技术研究.
  • Supported by:

    广东省科技计划项目(2005810201039);广州市科技计划项目(200723-D0141)

摘要: 针对活塞环渗氮硬化工序建模困难的情况,通过主成分分析法(PCA)提取氮化工序特征参数,降低了质量模型输入样本维数,建立了基于小波Elman神经网络的活塞环制造关键工序的质量预测模型,实现了工序过程质量波动趋势的预测,为后续的工艺优化和质量改进奠定了基础.结果表明,文中方法可以有效地改进渗氮硬化工序的质量控制,所建立的质量预测模型对输出质量特征值的预测准确率达到89%,具有比标准Elman网络更好的预测精度和收敛速度.

关键词: 活塞环, 渗氮硬化, 主成分分析法, Elman神经网络, 小波神经网络, 质量预测

Abstract:

This paper aims to overcome the difficulty in the modelling of nitride hardening of piston rings. In the in- vestigation, the feature parameters of nitridation process are extracted using the principal component analysis method to reduce the dimension of input samples in the quality model. Then, a quality prediction model of the key process for piston ring manufacturing is built based on the wavelet Elman neural network. The proposed model helps to pre- dict the process quality fluctuation and lays a foundation for further process optimization and quality improvement. Experimental results show that the proposed method effectively improves the quality control of nitride hardening, and that the proposed prediction model predicts more accurately and converges more quickly than the normal Elman neural network, showing an accuracy of output-quality characteristic value of 89%.

Key words: piston ring, nitride hardening, principal component analysis, Elman neural network, wavelet neural network, quality prediction