华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (2): 127-133,157.

• 动力与电气工程 • 上一篇    下一篇

大规模电力系统离散无功优化问题的解耦算法

赵维兴 刘明波 陈灿旭   

  1. 华南理工大学 电力学院, 广东 广州 510640
  • 收稿日期:2008-02-22 修回日期:2008-04-01 出版日期:2009-02-25 发布日期:2009-02-25
  • 通信作者: 赵维兴(1979-),男,博士生,主要从事电力系统最优潮流与无功优化调度研究. E-mail:zwxl82@163.com
  • 作者简介:赵维兴(1979-),男,博士生,主要从事电力系统最优潮流与无功优化调度研究.
  • 基金资助:

    国家自然科学基金资助项目(50777021);广东省自然科学基金资助项目(011648)

Decoupling Algorithm for Discrete Reactive-Power Optimization of Large-Scale Power System

Zhao Wei-xing  Liu Ming-bo  Chen Can-xu     

  1. School of Electric Power, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-02-22 Revised:2008-04-01 Online:2009-02-25 Published:2009-02-25
  • Contact: 赵维兴(1979-),男,博士生,主要从事电力系统最优潮流与无功优化调度研究. E-mail:zwxl82@163.com
  • About author:赵维兴(1979-),男,博士生,主要从事电力系统最优潮流与无功优化调度研究.
  • Supported by:

    国家自然科学基金资助项目(50777021);广东省自然科学基金资助项目(011648)

摘要: 根据节点分裂法将大规模电力系统的离散无功优化模型转化成多区域分解形式,再采用引入离散惩罚的非线性原对偶内点法求解,获得具有分块结构的降阶线性修正方程组.对弱耦合系统,直接将非对角子矩阵置零即可实现修正方程的完全解耦,算法具有局部线性收敛特性.对于强耦合系统,可以采用与处理弱耦合系统类似的方法获得近似牛顿方向和解耦对角矩阵,以它们作为迭代初值和预处理器,采用GMRES法求解,保证算法具有良好的收敛性和较快的计算速度.文中以1062节点系统和一个实际538节点系统验证了算法的有效性,进一步提出了较实用的解耦判据.

关键词: 电力系统, 无功优化, 解耦, 非线性原对偶内点法, 离散惩罚, 广义极小化残余法, 近似牛顿方向

Abstract:

In this paper, the node tearing method is adopted to convert the discrete reactive-power optimization model of large-scale power systems into a multi-zone decomposition one, and the nonlinear primal-dual interior- point method with discrete penalty is employed to solve the decomposition model and to further obtain reduced-order linear correction equations with a block structure. In weak coupling systems, the complete coupling of the correc- tion equations is implemented by setting the off-diagonal submatrixes to zero, and the algorithm is of local linear convergence. However, in strong coupling systems, both the approximate Newton directions and the decoupled dia- gonal matrix, which are computed by the method similar to handling weak coupling systems, are respectively taken as the initial values and the preconditioner when solving the linear correction equations using the GMRES algo- rithm, thus resulting in good convergence and high calculation speed of the algorithm. The proposed algorithm is fi- nally applied to a 1062-bus and a real 538-bus systems, with its effectiveness being verified and some practical de- coupling criteria being presented.

Key words: power system, reactive power optimization, decoupling, nonlinear primal-dual interior-point method, discrete penalty, generalized minimizing residual method, approximate Newton direction