华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (9): 68-75.doi: 10.12141/j.issn.1000-565X.240589

• 机械工程 • 上一篇    下一篇

智能弹道仿真足球辅助训练机器人研究

魏政君1    梁子健1    郑昆1    陈亮2   

  1. 1. 华南理工大学机械与汽车工程学院,广东 广州510640;

    2. 华南理工大学设计学院,广东 广州  510006

  • 出版日期:2025-09-25 发布日期:2025-04-07

Research on Intelligent Ballistic Trajectory Simulation Football Training Robot

WEI Zhengjun1    LIANG Zijian1    ZHENG Kun1    CHEN Liang2   

  1. 1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. School of Design, South China University of Technology, Guangzhou 510006, Guangdong, China

  • Online:2025-09-25 Published:2025-04-07

摘要:

随着健康意识的提高和竞技体育的普及,球类运动训练的科技化和专业化已成为发展趋势。在足球训练中,精确的射球轨迹模拟和个性化训练方案设计成为亟待解决的关键问题。本研究建立了一种智能弹道轨迹仿真足球辅助训练机器人系统,结合了射球机构、视觉采集、数据分析和运动控制等技术,旨在提升训练的科学性和有效性。该系统设计并实现了基于全向移动的三轴云台射球机器人,能够灵活调整射球角度和位置,以适应不同的训练需求。通过优化的RMSProp算法,该机器人实现了反向求解发射参数的功能,使偏航角和俯仰角能够根据目标位置进行精确调整。实验结果表明,机器人在各种训练条件下的射球进球点误差小于0.45m,理论轨迹与实际轨迹的均方根误差小于7.5cm,验证了系统的鲁棒性和精确性。此外,我们建立了详细的射球数据集,为后续的数据科学和人工智能研究提供了重要资源。这一研究推动了足球训练的智能化发展,为运动员提供了更为科学的训练工具,促进了足球运动的整体水平提升。

关键词: 足球机器人, 弹道轨迹仿真, RMSProp算法

Abstract:

With the increasing awareness of health and the popularity of competitive sports, the technological and professional development of ball sports training has become a significant trend. In football training, precise simulation of shooting trajectories and the design of personalized training programs are critical issues that need to be addressed. This study establishes an intelligent ballistic trajectory simulation football training robot system, integrating shooting mechanisms, visual acquisition, data analysis, and motion control technologies, aimed at enhancing the scientific and effective nature of training. The system features a three-axis gimbal shooting robot with omnidirectional movement capabilities, allowing it to flexibly adjust shooting angles and positions to meet various training needs. By utilizing an optimized RMSProp algorithm, the robot achieves the function of reverse solving launch parameters, enabling precise adjustments of yaw and pitch angles based on target positions. Experimental results indicate that the robot maintains a shooting point error of less than 0.45 meters under various training conditions, with a root mean square error of less than 7.5 centimeters between theoretical and actual trajectories, validating the system's robustness and accuracy. Additionally, we have established a detailed shooting dataset that provides important resources for future research in data science and artificial intelligence. This research promotes the intelligent development of football training, offering athletes a more scientific training tool and enhancing the overall level of football performance.

Key words: football robot, ballistics trajectory simulation, RMSProp algorithm