华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (6): 34-43.doi: 10.12141/j.issn.1000-565X.240176

• 土木建筑工程 • 上一篇    下一篇

考虑加固时间区间的在役混凝土桥梁运维策略研究

王晓明1 李鹏飞2 吴润涵1 杨文杰1 李晨曦1   

  1. 1.长安大学 公路学院,陕西 西安 710064;

    2. 浙江数智交院科技股份有限公司,浙江 杭州 310030

  • 出版日期:2025-06-25 发布日期:2024-12-06

Study on Maintenance Strategy of Existing Concrete Bridge Considering Reinforcement Time Interval

WANG Xiaoming  LI Pengfei  WU Runhan  YANG Wenjie   LI Chenxi   

  1. 1.School of Highway, Chang’an University, 710064, Shan Xi, China;

    2.Zhejiang Institute of Communications Co.,LTD , 310030, Zhe Jiang, China

  • Online:2025-06-25 Published:2024-12-06

摘要:

针对在役桥梁维修加固策略在制定和实施的过程中存在的主观不确定性的问题,本文提出了一种考虑加固时间区间的桥梁运维决策框架。该框架引入区间数来量化不能用概率描述的主观不确定性,并基于代理模型实现概率-区间混合不确定性下最不利可靠度指标的直接映射,最后通过多目标优化算法NSGA-Ⅱ,对该框架进行高效驱动。以典型装配式简支T梁桥为例,基于WIM系统实测数据建立了车辆荷载效应概率模型,之后引入时变抗力退化模型,对T梁桥的运维策略进行了优化,并制定了典型T梁桥的运维决策库。结果表明,时间区间较小的策略对应的全生命周期成本(Life Cycle Cost, LCC)较小,容许的主观不确定性也较小;时间区间较大的策略虽LCC较大,但为施工、决策等留有了更充足的空间。对于跨径20~40m的简支T梁桥,均可通过不同的加固策略,使其在LCC最小的情况下,满足服役期可靠度指标要求。

关键词: 桥梁运维决策, 时变可靠度, 全生命周期成本, 动态称重系统, 车辆荷载效应

Abstract:

In response to the issue of subjective uncertainty in the formulation and implementation of maintenance and strengthening strategies for in-service bridges, this paper proposes a bridge maintenance decision framework that considers the time interval it takes. This framework introduces interval numbers to quantify subjective uncertainty that cannot be described by probabilities. It achieves a direct mapping of the most unfavorable reliability index under probability-interval mixed uncertainty based on surrogate models. Thus, the multi-objective optimization algorithm NSGA-II can be used to make the framework efficient. Taking a typical assembled simply supported T-beam bridge as an example, a probability model of vehicle load effects is established based on WIM system measured data. Subsequently, a time-dependent resistance degradation model is introduced to optimize the maintenance strategy for the T-beam bridge and formulate a maintenance decision library for typical T-beam bridges. The results indicate that strategies with smaller time intervals correspond to smaller Life Cycle Cost (LCC) and lower permissible subjective uncertainty. Strategies with larger time intervals, although resulting in higher LCC, provide more flexibility for construction, decision-making, and other aspects. For simply supported T-beam bridges with spans ranging from 20 to 40 meters, various reinforcement strategies can be employed to meet the service reliability index requirements while minimizing LCC.

Key words: bridge operation and maintenance strategy, time-dependent reliability, Life Cycle Cost, Weigh-in-motion, vehicle load effect