华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (2): 92-106.doi: 10.12141/j.issn.1000-565X.240165

• 交通运输工程 • 上一篇    下一篇

基于长、短期设计波的浮式风机平台结构强度研究

李平, 王红博, 陈超核   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2024-04-09 出版日期:2025-02-25 发布日期:2025-02-03
  • 通信作者: 陈超核(1962—),男,教授,博士生导师,主要从事船舶与海洋结构设计研究。 E-mail:chenchaohe@scut.edu.cn
  • 作者简介:李平(1989—),男,博士生,主要从事海洋结构物结构设计研究。E-mail: liping_1013@163.com
  • 基金资助:
    国家自然科学基金项目(51979111);南方电网新能源联合实验室开放课题项目(GDXNY2022KF03);广东省重点领域研发计划项目(2020B1111010001)

Research on the Structural Strength of Floating Offshore Wind Turbine Platform Based on Long and Short Term Design Waves

LI Ping, WANG Hongbo, CHEN Chaohe   

  1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2024-04-09 Online:2025-02-25 Published:2025-02-03
  • Contact: 陈超核(1962—),男,教授,博士生导师,主要从事船舶与海洋结构设计研究。 E-mail:chenchaohe@scut.edu.cn
  • About author:李平(1989—),男,博士生,主要从事海洋结构物结构设计研究。E-mail: liping_1013@163.com
  • Supported by:
    the National Natural Science Foundation of China(51979111);the Key-Area Research and Development Program of Guangdong Province(2020B1111010001)

摘要:

浮式风机平台在深远海环境中的稳定性和安全性是浮式风机系统的核心问题。以浮式风机平台为研究对象,基于长、短期两种设计波方法,结合实际波浪长期统计数据和波浪短期预报数据,通过数值模拟分析了多载荷控制参数对极端波浪载荷作用下设计波参数的影响,并评估了浮式风机平台使用不同设计波方法所得的结构强度。研究结果表明:传统中纵剖面、中横剖面以及水线面的载荷控制参数无法准确捕捉浮式风机平台所遭受的最危险载荷,在浮式风机平台结构强度分析中还需要考虑不同结构连接位置的应力集中现象,因而需要分析多载荷控制参数对结构强度的影响;长期统计设计波法能够更全面地反映海洋环境的复杂性,可得到浮式风机平台处于最危险状态的设计波参数,而短期设计波法则在快速评估极端波浪条件下的结构强度方面具有优势,二者可根据浮式风机平台的不同设计阶段配合使用;通过设计波法寻找最危险工况不能仅比较设计波参数中的波高,由计算结果发现两种设计波法计算所得的最大应力不一定对应在最大波高上,即单凭设计波波高参数不能判断该设计波为最危险工况,需要综合考虑设计波的波高、波浪周期、浪向和相位等参数对结构强度的影响。研究结果对于浮式风机平台的结构设计和安全评估具有重要意义。

关键词: 浮式风机, 结构强度, 长期设计波, 短期设计波

Abstract:

Stability and safety of floating wind turbine platforms in deep and distant sea environments are the core issues of floating offshore wind turbine systems. This paper analyzed the effects of multiple load control parameters on the design wave parameters under extreme wave loads by numerical simulation based on two design wave methods of long and short-term, and evaluated the structural strength of the floating offshore wind turbine platform using different design wave methods. The results show that: the traditional load control parameters of mid-longitudinal profile, mid-transverse profile and waterline plane cannot accurately capture the most dangerous loading conditions suffered by the floating offshore wind turbine platform, and the structural strength analysis of the floating offshore wind turbine platform also needs to take into account the stress concentration phenomenon at different structural connection locations, and thus needs to consider the influence of more load control parameters on the structural strength; the long term statistical design wave method can reflect the complexity of the marine environment more comprehensively, and can obtain the structural strength of the floating offshore wind turbine platform using different design wave methods. The long-term statistical design wave method can more comprehensively reflect the complexity of the marine environment and obtain the design wave parameters of the floating offshore wind turbine platform in the most dangerous state, while the short-term design wave method has the advantage of quickly assessing the structural strength of extreme wave conditions. The two can be used in conjunction with each other in accordance with the different design stages of the floating offshore wind turbine platform. The search for the most dangerous working conditions through the design wave method can not be compared with only the height of the wave parameters in the design.Calculation results show that the maximum stress obtained from two different design wave methods does not necessarily correspond to the highest wave height. This indicates that the wave height alone cannot determine the most critical condition. A comprehensive analysis of factors such as wave height, wave period, wave direction, and phase is required to assess their impact on structural strength. These findings are of significant importance for the structural design and safety evaluation of floating wind turbine platforms.

Key words: floating offshore wind turbine, structural strength, long-term design wave, short-term design wave

中图分类号: