华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (1): 62-73.doi: 10.12141/j.issn.1000-565X.230715
马萍, 梁城, 王聪, 李新凯, 张宏立
收稿日期:
2023-11-16
出版日期:
2025-01-25
发布日期:
2025-01-02
通信作者:
梁城
E-mail:maping@xju.edu.cn;lcss5545@163.com
作者简介:
马萍(1994—),女,博士,副教授,主要从事机械系统动态建模与信号处理、智能故障诊断与寿命预测研究。E-mail: maping@xju.edu.cn
基金资助:
MA Ping, LIANG Cheng, WANG Cong, LI Xinkai, ZHANG Hongli
Received:
2023-11-16
Online:
2025-01-25
Published:
2025-01-02
Contact:
LIANG Cheng
E-mail:maping@xju.edu.cn;lcss5545@163.com
About author:
马萍(1994—),女,博士,副教授,主要从事机械系统动态建模与信号处理、智能故障诊断与寿命预测研究。E-mail: maping@xju.edu.cn
Supported by:
摘要:
滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中。在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义。但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,导致故障诊断的准确率低。因此,针对噪声干扰和变工况下的小样本滚动轴承故障诊断问题,该文提出了一种基于原型域增强的元学习去噪模型(Meta-DAE)。首先,构造基于时频图的小样本故障样本集,引入深度卷积生成对抗网络并对数据进行预处理,生成相似分布的伪样本集;然后,将故障样本集输入Meta-DAE模型进行自适应特征提取,Meta-DAE模型采用原型域增强策略,使同类别原型点在嵌入空间中凝聚更紧密;同时,构建了具有降噪性能的编码器,设计了基于原型域增强和去噪的目标函数,通过在小样本下进行模型微调,以提高小样本下模型的噪声鲁棒性和分类准确率。噪声及变工况下小样本故障诊断实验结果表明,相比于其他模型,所提模型在-8 dB强噪声干扰下,仅用10个样本微调模型,分类准确率提高了35.78~57.25个百分点,具有较强的噪声鲁棒性。
中图分类号:
马萍, 梁城, 王聪, 李新凯, 张宏立. 小样本下基于原型域增强的Meta-DAE故障诊断[J]. 华南理工大学学报(自然科学版), 2025, 53(1): 62-73.
MA Ping, LIANG Cheng, WANG Cong, LI Xinkai, ZHANG Hongli. Meta-DAE Fault Diagnosis Based on Prototype Domain Enhancement in Few-Shot[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(1): 62-73.
表4
CWRU轴承数据集在4种不同工况下的划分"
工况 | 数据集 | 样本数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | IF-7 | IF-14 | IF-21 | OF-7 | OF-14 | OF-21 | RF-7 | RF-14 | RF-21 | ||
A | 训练集 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
测试数 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | |
B | 训练集 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
测试集 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | |
C | 训练集 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
测试集 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | |
D | 训练集 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
测试集 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
表5
Meta-DAE模型在不同原型域增强因子下的分类准确率"
10类-1样本划分策略下的分类准确率/% | 10类-5样本划分策略下的分类准确率/% | |||||
---|---|---|---|---|---|---|
样本数为10 | 样本数为20 | 样本数为30 | 样本数为10 | 样本数为20 | 样本数为30 | |
0.0 | 94.56 | 98.82 | 99.30 | 97.56 | 99.16 | 99.56 |
0.2 | 97.25 | 99.25 | 99.73 | 98.86 | 99.31 | 99.76 |
0.4 | 98.67 | 99.55 | 99.76 | 99.16 | 99.37 | 99.89 |
0.6 | 99.16 | 99.67 | 99.83 | 99.64 | 99.87 | 99.98 |
0.8 | 99.12 | 99.42 | 99.86 | 99.38 | 99.64 | 99.92 |
1.0 | 98.07 | 99.25 | 99.68 | 99.12 | 99.52 | 99.86 |
表6
在CWRU轴承数据集上不同噪声干扰下6个模型的分类准确率"
样本数 | 模型 | 分类准确率/% | |||
---|---|---|---|---|---|
无噪声 | 噪声γ = 0 dB | 噪声γ = -4 dB | 噪声γ = -8 dB | ||
10 | ResNet | 90.79 | 71.78 | 58.79 | 39.87 |
LeNet | 89.43 | 79.11 | 62.89 | 23.22 | |
ProtoNet | 97.67 | 74.40 | 65.42 | 38.95 | |
LeNet-ProtNet | 93.36 | 48.26 | 41.80 | 22.20 | |
ResNet-ProtoNet | 96.20 | 72.14 | 35.40 | 18.40 | |
Meta-DAE | 99.66 | 88.67 | 74.25 | 75.65 | |
20 | ResNet | 96.62 | 81.86 | 70.36 | 48.38 |
LeNet | 94.36 | 81.75 | 67.13 | 41.25 | |
ProtoNet | 98.92 | 82.36 | 68.22 | 45.11 | |
LeNet-ProtNet | 96.54 | 62.20 | 65.33 | 21.80 | |
ResNet-ProtoNet | 98.89 | 84.42 | 63.00 | 20.60 | |
Meta-DAE | 99.87 | 92.60 | 81.50 | 83.16 | |
30 | ResNet | 98.56 | 85.21 | 74.39 | 58.42 |
LeNet | 97.58 | 84.79 | 72.78 | 46.33 | |
ProtoNet | 99.42 | 85.82 | 71.34 | 56.78 | |
LeNet-ProtNet | 98.72 | 71.45 | 69.26 | 26.13 | |
ResNet-ProtoNet | 99.64 | 87.52 | 68.93 | 24.32 | |
Meta-DAE | 99.98 | 93.25 | 82.45 | 85.67 |
表7
跨域工况下不同模型的分类准确率"
样本数 | 模型 | 不同跨域工况下的分类准确率/% | |||||
---|---|---|---|---|---|---|---|
A→B | B→C | C→D | D→A | A→C | A→D | ||
10 | LeNet | 87.12 | 87.42 | 86.69 | 67.83 | 84.67 | 62.23 |
ResNet | 84.34 | 85.73 | 84.22 | 69.35 | 78.86 | 66.23 | |
ProtoNet | 95.23 | 95.48 | 95.41 | 90.14 | 94.60 | 94.41 | |
LeNet-ProtoNet | 92.72 | 93.66 | 92.83 | 85.31 | 92.52 | 86.81 | |
ResNet-ProtoNet | 94.28 | 94.57 | 94.26 | 92.89 | 95.04 | 94.36 | |
Meta-DAE | 99.13 | 99.32 | 99.45 | 97.56 | 99.23 | 98.67 | |
20 | LeNet | 88.29 | 89.58 | 89.95 | 64.16 | 85.24 | 66.34 |
ResNet | 89.46 | 93.15 | 90.72 | 75.14 | 82.67 | 74.93 | |
ProtoNet | 98.76 | 97.74 | 98.06 | 96.23 | 98.86 | 97.12 | |
LeNet-ProtoNet | 93.52 | 94.07 | 94.50 | 86.78 | 94.68 | 88.32 | |
ResNet-ProtoNet | 97.18 | 97.29 | 97.12 | 96.48 | 98.65 | 97.52 | |
Meta-DAE | 99.61 | 99.76 | 99.67 | 98.23 | 99.78 | 99.25 | |
30 | LeNet | 92.72 | 93.78 | 90.59 | 72.95 | 91.32 | 73.62 |
ResNet | 93.67 | 96.47 | 97.35 | 79.81 | 85.34 | 81.52 | |
ProtoNet | 98.94 | 98.92 | 98.85 | 97.65 | 98.36 | 98.82 | |
LeNet-ProtoNet | 96.64 | 96.95 | 95.71 | 92.54 | 96.56 | 93.84 | |
ResNet-ProtoNet | 98.54 | 98.86 | 98.77 | 97.23 | 99.23 | 98.79 | |
Meta-DAE | 99.82 | 99.93 | 99.84 | 99.44 | 99.98 | 99.73 |
表11
东南大学轴承数据集上不同噪声干扰下6个模型的分类准确率"
数据集 | 模型 | 分类准确率/% | |||
---|---|---|---|---|---|
无噪声 | 噪声γ=0 dB | 噪声γ= -4 dB | 噪声γ= -8 dB | ||
轴承 | LeNet | 82.52 | 49.89 | 31.78 | 15.67 |
ResNet | 81.13 | 44.44 | 27.56 | 17.11 | |
ProtoNet | 83.32 | 51.67 | 33.22 | 24.44 | |
LeNet-ProtoNet | 65.96 | 35.72 | 27.80 | 15.12 | |
ResNet-ProtoNet | 72.14 | 32.20 | 21.48 | 12.16 | |
Meta-DAE | 97.64 | 85.36 | 81.24 | 74.83 | |
齿轮 | LeNet | 76.63 | 36.79 | 21.89 | 12.11 |
ResNet | 79.36 | 35.11 | 26.62 | 13.36 | |
ProtoNet | 82.31 | 45.24 | 22.47 | 12.83 | |
LeNet-ProtoNet | 62.94 | 29.04 | 19.48 | 14.56 | |
ResNet-ProtoNet | 83.76 | 28.52 | 21.37 | 16.78 | |
Meta-DAE | 96.26 | 83.75 | 78.63 | 72.51 |
1 | HU X S, ZHANG K, LIU K L,et al .Advanced fault diagnosis for lithium-ion battery systems:a review of fault mechanisms,fault features,and diagnosis procedures[J].IEEE Industrial Electronics Magazine,2020,14(3):65-91. |
2 | KANKAR P K, SHARMA S C, HARSHA S P .Fault diagnosis of ball bearings using machine learning methods[J].Expert Systems with Applications,2011,38(3):1876-1886. |
3 | LEI Y G, YANG B, JIANG X W,et al .Applications of machine learning to machine fault diagnosis:a review and roadmap[J].Mechanical Systems and Signal Processing,2020,138:106587/1-39. |
4 | FENG Y, CHEN J L, XIE J S,et al .Meta-learning as a promising approach for few-shot cross-domain fault diagnosis:algorithms,applications,and prospects[J].Knowledge-Based Systems,2022,235:107646/1-27. |
5 | HOANG D T, KANG J .A survey on deep learning based bearing fault diagnosis[J].Neurocomputing,2019,335:327-335. |
6 | JIA F, LEI Y, GUO L,et al .A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J].Neurocomputing,2018,272:619-628. |
7 | WEN L, LI X Y, GAO L,et al .A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2017,65(7):5990-5998. |
8 | ZHANG W, PENF G L, LI C H,et al .A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors,2017,17(2):425/1-21. |
9 | ZHAO M H, ZHONG S S, FU X Y,et al .Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics,2019,16(7):4681-4690. |
10 | 万若青,张纯,江汇强,等 .基于深度自编码器的振动信号盲去噪方法[J].振动与冲击,2023,42(12):118-125. |
WAN Ruoqing, ZHANG Chun, JIANG Huiqiang,et al .A blind denoising method of vibration signals based on a deep autoencoder[J].Journal of Vibration and Shock,2023,42(12):118-125. | |
11 | DONG Y J, LI Y Q, ZHENG H L,et al .A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults:solving the small sample problem[J].ISA Transactions,2022,121:327-348. |
12 | 刘飞,陈仁文,邢凯玲,等 .基于迁移学习与深度残差网络的滚动轴承快速故障诊断算法[J].振动与冲击,2022,41(3):154-164. |
LIU Fei, CHEN Renwen, XING Kailing,et al .Fast fault diagnosis algorithm for rolling bearings based on transfer learning and deep residual network[J].Journal of Vibration and Shock,2022,41(3):154-164. | |
13 | CHEN H, LIU R N, XIE Z X,et al .Majorities help minorities:hierarchical structure guided transfer lear-ning for few-shot fault recognition[J].Pattern Recognition,2022,123:108383/1-15. |
14 | ZHANG T C, CHEN J L, HE S L,et al .Prior knowledge-augmented self-supervised feature learning for few-shot intelligent fault diagnosis of machines[J].IEEE Transactions on Industrial Electronics,2022,69(10):10573-10584. |
15 | 强睿儒,赵小强 .基于格拉姆角差场和生成对抗网络的小样本滚动轴承故障诊断方法[J].华南理工大学学报(自然科学版),2024,52(10):64-75. |
QIANG Ruiru, ZHAO Xiaoqiang.Fault diagnosis method for rolling bearings based on Gram angular field and generative adversarial networks[J].Journal of South China University of Tchnology(Natural Science Edition),2024,52(10):64-75. | |
16 | 胡若晖,张敏,许文鑫 .基于DCGAN和DANN网络的滚动轴承跨域故障诊断[J].振动与冲击,2022,41(6):21-29. |
HU Ruohui, ZHANG Min, XU Wenxin .Cross-domain fault diagnosis of rolling element bearings using DCGAN and DANN[J].Journal of Vibration and Shock,2022,41(6):21-29. | |
17 | LEI T Y, HU H H, LUO Q Y,et al .Adaptive meta-learner via gradient similarity for few-shot text classification[EB/OL].(2022-09-10)[2023-06-20].. |
18 | CHEN Y D, GUAN C Y, WEI Z K,et al .Meta-Delta:a meta-learning system for few-shot image cla-ssification[J].Proceedings of Machine Learning Research,2021,140:17-28. |
19 | HOSPEDALES T, ANTREAS A, MICAELL P,et al .Meta-learning in neural networks:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(9):5149-5169. |
20 | LI C J, LI S B, ZHANG A S,et al .Meta-learning for few-shot bearing fault diagnosis under complex working conditions[J].Neurocomputing,2021,439:197-211. |
21 | WANG D, ZHANG M, XU Y C,et al .Metric-based meta-learning model for few-shot fault diagnosis under multiple limited data conditions[J].Mechanical Systems and Signal Processing,2021,155:107510/1-15. |
22 | FENG Y, CHEN J L, ZHANG T C,et al .Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis[J].ISA Transactions,2022,120:383-401. |
23 | YAN R Q, GAO R X, CHEN X F .Wavelets for fault diagnosis of rotary machines:a review with applications [J].Signal Processing,2014,96:1-15. |
24 | RADFORD A, METZ L, CHINTALA S .Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].(2015-11-19)[2023-06-20].. |
25 | SNELL J, SWERSKY K, ZEMEL R .Prototypical networks for few-shot learning[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems.Long Beach:ACM,2017:4080-4090. |
26 | SAUFI S R, AHMAD Z A B, LEONG M S,et al .Gearbox fault diagnosis using a deep learning model with limited data sample[J].IEEE Transactions on Industrial Informatics,2020,16(10):6263-6271. |
[1] | 强睿儒, 赵小强. 基于格拉姆角差场和生成对抗网络的小样本滚动轴承故障诊断方法[J]. 华南理工大学学报(自然科学版), 2024, 52(10): 64-75. |
[2] | 陈新度, 扶治森, 吴智恒, 等. 基于多头卷积和差分自注意力的小样本故障诊断方法[J]. 华南理工大学学报(自然科学版), 2023, 51(7): 21-33. |
[3] | 赵荣超, 吴百礼, 陈祝云, 等. 多尺度时空信息融合驱动的图神经网络故障诊断方法[J]. 华南理工大学学报(自然科学版), 2023, 51(12): 42-52. |
[4] | 陈忠, 唐鑫, 张大明, 等. S变换子域适应的扶梯电机轴承迁移诊断[J]. 华南理工大学学报(自然科学版), 2023, 51(12): 34-41. |
[5] | 刘乙奇, 黄志鹏, 于广平, 等. 全生命周期污泥膨胀的智能检测和诊断分析[J]. 华南理工大学学报(自然科学版), 2022, 50(6): 91-99,110. |
[6] | 张艳, 吴洛天, 王年, 等. 基于多模块关系网络的2D足迹分类[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 66-76. |
[7] | 唐宏宾, 傅政, 邓习树, 等. 工程机械柱塞泵变载荷工况故障诊断方法[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 110-119. |
[8] | 郭明军, 李伟光, 杨期江, 等. PCA 的幅值滤波特性及在转子特征提取中的应用[J]. 华南理工大学学报(自然科学版), 2020, 48(5): 125-133. |
[9] | 郭明军, 李伟光, 杨期江, 等. 基于稀疏算法的大型转子多工况轴心轨迹提纯[J]. 华南理工大学学报(自然科学版), 2020, 48(4): 45-53. |
[10] | 程洪超, 吴菁, 刘乙奇, 等. 面向污水处理过程的预测元-RVM 故障诊断建模[J]. 华南理工大学学报(自然科学版), 2020, 48(3): 10-17. |
[11] | 周璇, 王晓佩, 梁列全, 等.
基于随机森林算法的制冷剂充注量故障诊断
[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 16-24. |
[12] | 许玉格 赖春伶 罗飞. 基于不平衡分类的Bagging集成污水处理故障诊断[J]. 华南理工大学学报(自然科学版), 2018, 46(8): 107-115. |
[13] | 戴屹梅 张和生 李东 齐红梅. 基于时幅拐点的突发信号特征频率捕获算法[J]. 华南理工大学学报(自然科学版), 2018, 46(3): 142-148. |
[14] | 赵德尊 李建勇 程卫东. 齿轮噪声干扰及变转速下的滚动轴承故障诊断[J]. 华南理工大学学报(自然科学版), 2016, 44(2): 67-73. |
[15] | 肖红军 刘乙奇 黄道平. 高斯过程建模方法在工业过程中的应用[J]. 华南理工大学学报(自然科学版), 2016, 44(12): 36-43,52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||