华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (6): 120-127.doi: 10.12141/j.issn.1000-565X.220728
LI Song(), WANG He, ZHANG Liping
摘要:
路网中的skyline查询在智慧交通、兴趣点发现和位置服务等领域具有重要的应用价值,但存在查询效率较低、未考虑查询结果的隐私性等问题。有鉴于此,文中提出了一种基于差分隐私的路网环境下skyline查询方法。首先,针对路网环境下的初始数据集数据量大和数据复杂的特点,对数据集进行预处理,利用基于距离属性划分的skyline层和路网Voronoi图的性质提出了3个剪枝规则,基于剪枝规则给出了路网环境下的数据集剪枝算法,从而有效地过滤掉大量冗余数据;其次,针对过滤后的数据集,利用网格索引的存储方式来节省存储空间,并设计了基于网格索引的skyline扩展树,基于扩展树和相应的剪枝规则提出了查询全局候选skyline点集的算法;最后,针对查询结果集,利用差分隐私预算分配模型来分配隐私预算,并基于信息散度进行结果集发布,有效提高了数据信息的隐私性。实验结果表明:所提出的查询方法的准确率在99%以上;其在数据集规模较大情况下的查询效率相较于传统skyline查询方法提升10%以上;在总差分隐私预算为0.01、0.10、0.50和1.00时,所提出的隐私预算分配方法的相对误差均低于等差分配和等比分配方法。
中图分类号: