1 |
GIRSHICK R, DONAHUE J, DARRELL T,et al .Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:580-587.
|
2 |
REN S Q, HE K M, GIRSHICK R,et al .Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactionson on Patern Analysis and Machine Inteligence,2017,39(6):1137-1149.
|
3 |
GIRSHICK R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R,et al .You only look once:unified,real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016:779-788.
|
5 |
REDMON J, FARHADI A. Yolov3:an incremental improvement[J].arXiv Preprint arXiv:,2018.
|
6 |
REDMON J, FARHADI A .YOLO9000:better,faster,stronger[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:7263-7271.
|
7 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M .Yolov4:optimal speed and accuracy of object detection[J].arXiv Preprint arXiv:,2020.
|
8 |
GE Z, LIU S, WANG F,et al .Yolox:exceeding yolo series in 2021[J].arXiv Preprint arXiv:,2021.
|
9 |
LIU W, ANGUELOV D, ERHAN D,et al .SSD:single shot multibox detector[C]∥Proceedings of the 14th European Conference on Computer Vision. Amsterdam:Springer,2016:21-37.
|
10 |
王卜,何扬 .基于改进YOLOv3的交通标志检测[J].四川大学学报(自然科学版),2022,59(1):57-67.
|
|
WANG Bu, HE Yang .Traffic sign detection based on improved YOLOv3[J].Journal of Sichuan University(Natural Science Edition),2022,59(1):57-67.
|
11 |
陈梦涛,余粟 .基于改进YOLOV4模型的交通标志识别研究[J].微电子学与计算机,2022,39(1):17-25.
|
|
CHEN Mengtao, YU Su .Research on traffic sign recognition based on improved YOLOV4 model[J].Microelectronics & Computer,2022,39(1):17-25.
|
12 |
HOU Q B, ZHOU D Q, FENG J S .Coordinate attention for efficient mobile network design[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2021:13713-13722.
|
13 |
LIU S T, HUANG D, WANG Y H .Learning spatial fusion for single-shot object detection[J].arXiv Preprint arXiv:,2019.
|
14 |
LIU X, JIANG X K, HU H C,et al .Traffic sign recognition algorithm based on improved YOLOv5s[C]∥Proceedings of the International Conference on Control,Automation and Information Sciences.Xi’an:IEEE,2021:980-985.
|
15 |
KINGMA D P, BA J .Adam:a method for stochastic optimization[J].arXiv Preprint arXiv:,2014.
|
16 |
SANDLER M, HOWARD A, ZHU M,et al .Mobilenetv2:inverted residuals and linear bottlenecks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520.
|
17 |
WANG C Y, LIAO H Y M, WU Y H,et al .CSPNet:a new backbone that can enhance learning capability of CNN[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2020:390-391.
|
18 |
冯润泽,江昆,于伟光,等 .基于两阶段分类算法的中国交通标志牌识别[J].汽车工程,2022,44(3):434-441,448.
|
|
FENG Runze, JIANG Kun, YU Weiguang,et al .Chinese traffic sign recognition based on two-stage classification algorithm[J].Automotive Engineering,2022,44(3):434- 441,448.
|
19 |
HE K M, ZHANG X Y, REN S Q,et al .Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
|
20 |
LIU S, QI L, QIN H F,et al .Path aggregation network for instance segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768.
|
21 |
GHIASI G, CUI Y, SRINIVAS A,et al .Simple copy-paste is a strong data augmentation method for instance segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2021:2918-2928.
|
22 |
KRISHNA K, MURTY M N .Genetic K-means algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),1999,29(3):433-439.
|
23 |
ZHENG Z H, WANG P, LIU W,et al .Distance-IoU loss:faster and better learning for bounding box regression[C]∥Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI,2020,34(7):12993-13000.
|
24 |
IOFFE S, SZEGEDY C .Batch normalization:accelerating deep network training by reducing internal covariate shift[C]∥Proceedings of International Conference on Machine Learning.Lille:ACM,2015:448-456.
|
25 |
HU J, SHEN L, SUN G .Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:7132-7141.
|
26 |
LIN T Y, DOLLÁR P, GIRSHICK R,et al .Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:2117-2125.
|
27 |
ZHANG H, CISSE M, DAUPHIN Y N,et al .Mixup:beyond empirical risk minimization[J].arXiv Preprint arXiv:,2017.
|
28 |
YUN S, HAN D, OH S J,et al .Cutmix:regularization strategy to train strong classifiers with localizable features[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:6023-6032.
|