1 |
SU H, MAJI S, KALOGERAKIS E,et al .Multi-view convolutional neural networks for 3d shape recognition[C]∥ Proceedings of the IEEE International Conference on Computer Vision.Santiago:IEEE,2015:945-953.
|
2 |
MATURANA D, SCHERER S .Voxnet:a 3d convolutional neural network for real-time object recognition[C]∥ Proceeding of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Hamburg:IEEE,2015:922-928.
|
3 |
ZHANG C, WAN H, SHEN X,et al .PVT:point-voxel transformer for point cloud learning[J].arXiv Preprint arXiv:,2021.
|
4 |
QI C R, SU H, MO K,et al .Pointnet:deep learning on point sets for 3d classification and segmentation[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:652-660.
|
5 |
QI C R, YI L, SU H,et al .Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]∥ Proceeding of Advances in Neural Information Processing Systems.Long Beach:Curran Associates Inc,2017:5105-5114.
|
6 |
LI Y, BU R, SUN M,et al .Pointcnn:convolution on x-transformed points[C].Proceeding of Advances in Neural Information Processing Systems.Montréal:Curran Associates Inc,2018:31.
|
7 |
WU W, QI Z, FUXIN L .Pointconv:deep convolutional networks on 3d point clouds[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:9621-9630.
|
8 |
陈根,冯肖维 .基于K最近邻局部点关系图卷积的点云分类[J].应用激光,2022,42(2):78-83.
|
|
CHEN Gen, FENG Xiaowei .Point cloud classification based on k-nearest neighbor local point relation graph convolution[J].Applied Laser,2022,42(2):78-83.
|
9 |
XU M, DING R, ZHAO H,et al .Paconv:position adaptive convolution with dynamic kernel assembling on point clouds[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:3173-3182.
|
10 |
WANG Y, SUN Y, LIU Z,et al .Dynamic graph cnn for learning on point clouds[J].Acm Transactions on Graphics (tog),2019,38(5):1-12.
|
11 |
ZHANG K, HAO M, WANG J,et al .Linked dynamic graph cnn:learning on point cloud via linking hierarchical features[J].arXiv Preprint arXiv: 1904.10014,2019.
|
12 |
兰红,陈浩,张蒲芬 .集图卷积和三维方向卷积的点云分类分割模型[J].计算机工程与应用,2023,59(8):182-191.
|
|
LAN Hong, CHEN Hao, ZHANG Pufen .Point cloud classification and segmentation model based on graph convolutionand 3D direction convolution[J].Computer Engineering and Applications,2023,59(8):182-191.
|
13 |
芦新宇,杨冰,叶海良,等 .基于局部-非局部交互卷积的3D点云分类[J].模式识别与人工智能,2022,35(2):141-149.
|
|
LU Xinyu, YANG Bing, YE Hailiang,et al .3D point cloud classification based on local-nonlocal interactive convolution[J].Pattern Recognition and Artificial Intelligence,2022,35(2):141-149.
|
14 |
戴莫凡,邢帅,徐青,等 .多特征融合与几何卷积的机载LiDAR点云地物分类[J].中国图象图形学报,2022,27(2):574-585.
|
|
DAI Mofan, XING Shuai, XU Qing,et al .Semantic segmentation of airborne LiDAR point cloud based on multi-feature fusion and geometric convolution[J].Journal of Image and Graphics,2022,27(2):574-585.
|
15 |
杜静,蔡国榕 .多特征融合与残差优化的点云语义分割方法[J].中国图象图形学报,2021,26(5):1105-1116.
|
|
DU Jing, CAI Guorong .Point cloud semantic segmentation method based on multi-feature fusion and residual optimization[J].Journal of Image and Graphics,2021,26(5):1105-1116.
|
16 |
VASWANI A, SHAZEER N, PARMAR N,et al .Attention is all you need[C]∥ Proceeding of Advances in Neural Information Processing Systems.Long Beach:NIPS,2017:5998-6008.
|
17 |
ZHAO H, JIANG L, JIA J,et al .Point transformer[C]∥ Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:16259-16268.
|
18 |
CHEN C, FRAGONARA L Z, TSOURDOS A .GAPointNet:graph attention based point neural network for exploiting local feature of point cloud[J].Neurocomputing,2021,43:122-132.
|
19 |
GUO M H, CAI J X, LIU Z N,et al .Pct:point cloud transformer[J].Computational Visual Media,2021,7(2):187-199.
|
20 |
陈涵娟,达飞鹏,盖绍彦 .基于竞争注意力融合的深度三维点云分类网络[J].浙江大学学报(工学版),2021,55(12):2342-2351.
|
|
CHEN Hanjuan, Feipeng DA, GAI Shaoyan .Deep 3D point cloud classification network based on competitive attention fusion[J].Journal of Zhejiang University(Engineering Science),2021,55(12):2342-2351.
|
21 |
王利媛,付丽华 .基于注意力机制点卷积网络的机载LiDAR点云分类[J].激光与光电子学进展,2022,59(10):456-465.
|
|
WANG Liyuan, FU Lihua .Airborne LiDAR point cloud classification based on attention mechanism point convolutional network[J].Laser & Optoelectronics Progress,2022,59(10):456-465.
|
22 |
XIANG T, ZHANG C, SONG Y,et al .Walk in the cloud:learning curves for point clouds shape analysis[C]∥ Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:915-924.
|
23 |
RAN H, LIU J, WANG C .Surface representation for point clouds[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:18942-18952.
|
24 |
CORDONNIER J B, LOUKAS A, JAGGI M .On the relationship between self-attention and convolutional layers[J].arXiv Preprint arXiv:,2019.
|
25 |
杜启亮,向照夷,田联房,等 .用于动作识别的双流自适应注意力图卷积网络[J].华南理工大学学报(自然科学版),2022,50(12):20-29.
|
|
DU Qiliang, XIANG Zhaoyi, TIAN Lianfang,et al .Two-Stream adaptive attention graph convolutional networks for action recognition[J].Journal of South China University of Technology(Natural Science Edition),2022,50(12):20-29.
|
26 |
杨春玲,杨雅静 .基于多尺度特征逐层融合深度神经网络的无参考图像质量评价方法[J].华南理工大学学报(自然科学版),2022,50(4):81-89.
|
|
YANG Chunling, YANG Yajing .A deep neural network based on layer-by-layer fusion of multi-scale features for no-reference image quality assessment[J].Journal of South China University of Technology(Natural Science Edition),2022,50(4):81-89.
|
27 |
WU Z, SONG S, KHOSLA A,et al .3d shapenets:a deep representation for volumetric shapes[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1912-1920.
|
28 |
UY M A, PHAM Q H, HUA B S,et al .Revisiting point cloud classification:a new benchmark dataset and classification model on real-world data[C]∥ Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:1588-1597.
|
29 |
QI C R, SU H, NIEßNER M,et al .Volumetric and multi-view cnns for object classification on 3d data[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:5648-5656.
|