1 |
赵鹏武,武峻毅,张恒 .基于聚类分析法的我国森林火险等级区划研究[J].林业工程学报,2021,6(3):142-148.
|
|
ZHAO Pengwu, WU Junyi, ZHANG Heng .Study on forest fire risk classification in China using cluster analysis[J].Journal of Forestry Engineering,2021,6(3):142-148.
|
2 |
祖鑫萍,李丹 .基于无人机图像和改进YOLOv3-SPP算法的森林火灾烟雾识别方法[J].林业工程学报,2022,7(5):142-149.
|
|
ZU Xinping, LI Dan .Research on forest fire smoke identification method based on UAV images and improved YOLOv3-SPP algorithm[J].Journal of Forestry Engineering,2022,7(5):142-149.
|
3 |
杜嘉欣,常青,刘鑫 .面向森林火灾烟雾识别的深度信念卷积网络[J].现代电子技术,2020,43(13):44-48.
|
|
DU Jiaxin, CHANG Qing, LIU Xin .DBN-CNN for forest fire smoke recognition[J].Modern Electronics Technique,2020,43(13):44-48.
|
4 |
李珍辉,鲁静文,陈镜伊,等 .基于InceptionV3卷积神经网络森林火灾检测方法[J].湖南工程学院学报(自然科学版),2021,31(4):44-49.
|
|
LI Zhen-hui, LU Jing-wen, CHEN Jing-yi,et al .Forest fire detection method based on inception V3 convolutional neural network[J].Journal of Hunan University of Engineering (Natural Science Edition),2021,31(4):44-49.
|
5 |
李梁,董旭彬,赵清华 .改进Mask R-CNN在航拍灾害检测的应用研究[J].计算机工程与应用,2019,55(21):167-176.
|
|
LI Liang, DONG Xubin, ZHAO Qinghua .Application research of improved Mask R-CNN in aerial disaster detection[J].Computer Engineering and Applications,2019,55(21):167-176.
|
6 |
周浪,樊坤,瞿华,等 .基于Sparse-DenseNet模型的森林火灾识别研究[J].北京林业大学学报,2020,42(10):36-44.
|
|
ZHOU Lang, FAN Kun, QU Hua,et al .Forest fire identification based on Sparse-DenseNet model[J].Journal of Beijing Forestry University,2020,42(10):36-44.
|
7 |
李巨虎,范睿先,陈志泊 .基于颜色和纹理特征的森林火灾图像识别[J].华南理工大学学报(自然科学版),2020,48(1):70-83.
|
|
LI Juhu, FAN Ruixian, CHEN Zhibo .Forest fire recognition based on color and texture features[J].Journal of South China University of Technology (Natural Science Edition),2020,48(1):70-83.
|
8 |
李惠鹏,李长勇,李贵宾,等 .基于深度学习的多品种鲜食葡萄采摘点定位[J].中国农机化学报,2022,43(12):155-161.
|
|
LI Huipeng, LI Changyong, LI Guibin,et al .Picking point positioning of multi-variety table grapes based on deep-learning[J].Journal of Chinese Agricultural Mechanization,2022,43(12):155-161.
|
9 |
吴天赐,郁佳鑫,黄晓峰,等 .深度学习图片分类模型ResNet-18用于判定口腔鳞状细胞癌浸润方式的初步研究[J].口腔医学研究,2023,39(10):917-922.
|
|
WU Tianci, YU Jiaxin, HUANG Xiaofeng,et al .Preliminary study on deep learning picture classification model for identification and classification of invasion pattern of oral squamous cell carcinoma[J].Journal of Stomatology,2023,39(10):917-922.
|
10 |
苏令涛,李瑞泽,张功磊,等 .基于深度学习的农作物病虫害识别研究[J].数学建模及其应用,2022,11(4):1-12.
|
|
SU Lingtao, LI Ruize, ZHANG Gonglei,et al .Research on deep learning based crop pest and disease identification[J].Mathematical Modeling and Its Application,2022,11(4):1-12.
|
11 |
GOUR M, JAIN S, KUMAR T S .Residual learning based CNN for breast cancer histopathological image classification[J].International Journal of Imaging Systems and Technology,2020,30(3):621-635.
|
12 |
WEINAN E, MA C, WU L .A comparative analysis of optimization and generalization properties of two-layer neural network and random feature models under gradient descent dynamics[J].Science China Mathematics,2020,63(7):1235-1265.
|
13 |
TAN M, LE Q V .EfficientNet:rethinking model scaling for convolutional neural networks[C]∥Proceedings of the 36th International Conference on Machine Learning.Long Beach:ACM,2019:6105-6114.
|
14 |
尹梓睿,张索非,张磊,等 .适于行人重识别的二分支EfficientNet网络设计[J].信号处理,2020,36(9):1481-1488.
|
|
YIN Zirui, ZHANG Suofei, ZHANG Lei,et al .Design of a two-branch EfficientNet for person re-identification[J].Signal Processing,2020,36(9):1481-1488.
|
15 |
叶冲,杨晶东 .基于CBAM-EfficientNet的垃圾图像分类算法研究[J].智能计算机与应用,2021,11(5):218-222.
|
|
YE Chong, YANG Jingdong .Algorithm research on garbage image classification based on CBAM-EfficientNet[J].Intelligent Computer and Application,2021,11(5):218-222.
|
16 |
姜天宇,赵晓林,赵搏欣,等 .基于EfficientNet的木薯叶病变自动分类模型[J].计算机应用,2022,42(S1):64-70.
|
|
JIANG Tianyu, ZHAO Xiaolin, ZHAO Boxin,et al .Automatic classification model for cassava leaf disease based on EfficientNet[J].Computer Application,2022,42(S1):64-70.
|
17 |
WANG Q, WU B, ZHU P,et al .Supplementary material for ECA-Net:efficient channel attention for deep convolutional neural networks[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA:IEEE,2020:13-19.
|