1 |
STROMEYER C E .The determination of fatigue limits under alternating stress conditions[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1914,90:411-425.
|
2 |
MATHUR S, GOPE P C, SHARMA J K .Prediction of fatigue lives of composites material by artificial neural network[C]∥ Proceedings of the SEM 2007 Annual Conference and Exposition.Springfield:Society for Experimental Mechanics,2007:260/1-8.
|
3 |
TROUDET T, MERRILL W .A real time neural net estimator of fatigue life[C]∥ Proceedings of IJCNN International Joint Conference on Neural Networks.San Diego:IEEE,1990:59-64.
|
4 |
ARTYMIAK P, BUKOWSKI L, FELIKS J,et al .Determination of S-N curves with the application of artificial neural networks[J].Fatigue & Fracture of Engineering Materials & Structures,1999,22(8):723-728.
|
5 |
VASSILOPOULOS A P, GEORGOPOULOS E F, DIONYSOPOULOS V .Artificial neural networks in spectrum fatigue life prediction of composite materials[J].International Journal of Fatigue,2007,29(1):20-29.
|
6 |
温海骏,孟小玲,曾艾婧,等 .基于二阶粒子群算法优化的神经网络再制造工件疲劳寿命预测[J].科学技术与工程,2019,19(21):21-26.
|
|
WEN Haijun, MENG Xiaoling, ZENG Aijing,et a1 .Fatigue life prediction of neural network remanufactured based on second-order particle swarm optimization[J].Science Technology and Engineering,2019,19(21):2l-26.
|
7 |
胡贇,刘少军,廖雅诗,等 .基于蒙特卡罗模拟方法的疲劳强度概率分布推断[J].华南理工大学学报(自然科学版),2014,42(9):35-40.
|
|
HU Yun, LIU Shao-jun, LIAO Ya-shi,et al .Fatigue strength probability distribution inference based on Monte Carlo simulation method [J].Journal of South China University of Technology (Natural Science Edition),2014,42(9):35-40.
|
8 |
LING J, PAN J .A maximum likelihood method for estimating P-S-N curves[J].International Journal of Fatigue,1997,19(5):415-419.
|
9 |
赵永翔,王金诺,高庆 .估计三种常用疲劳应力-寿命模型P-S-N曲线的统一经典极大似然法[J].应用力学学报,2001,18(1):83-90.
|
|
ZHAO Yongxiang, WANG Jinnuo, GAO Qing .Unified classical maximum likelihood method for estimating P-S-N curves of three commonly used fatigue stress life models[J].Chinese Journal of Applied Mechanics,2001,18(1):83-90.
|
10 |
KLEMENC J, FAJDIGA M .Estimating S-N curves and their scatter using a differential ant-stigmergy algorithm[J].International Journal of Fatigue,2012,43:90-97.
|
11 |
XIE L, LIU J, WU N,et al .Backwards statistical inference method for P-S-N curve fitting with small-sample experiment data[J].International Journal of Fatigue,2014,63:62-67.
|
12 |
刘潇然,孙秦,梁珂 .工程p-S-N曲线的小子样预测方法研究[J].西北工业大学学报,2018,36(5):831-838.
|
|
LIU Xiaoran, SUN Qin, LIANG Ke .A small sample prediction method for engineering p-S-N curve[J].Journal of Northwestern Polytechnical University,2018,36(5):831-838.
|
13 |
GUIDA M, PENTA F .A Bayesian analysis of fatigue data[J].Structural Safety,2010,32(1):64-76.
|
14 |
BABUŠKA I, SAWLAN Z, SCAVINO M,et al .Bayesian inference and model comparison for metallic fatigue data[J].Computer Methods in Applied Mechanics & Engineering,2016,304:171-196.
|
15 |
LIU Xiao-Wei, LU Da-Gang, HOOGENBOOM P C J .Hierarchical Bayesian fatigue data analysis[J].International Journal of Fatigue,2017,100:418-428.
|
16 |
CHEN J, LIU S, ZHANG W,et al .Uncertainty quantification of fatigue S-N curves with sparse data using hierarchical Bayesian data augmentation[J].International Journal of Fatigue,2020,134:105511/1-12.
|
17 |
CHEN J, LIU Y .Probabilistic physics-guided machine learning for fatigue data analysis[J].Expert Systems with Applications,2021,168:114316/1-14.
|
18 |
MACKAY D J C .Bayesian methods for adaptive models[D].Pasadena:California Institute of Technology,1992.
|
19 |
NEAL R M .Bayesian learning for neural networks[M].New York:Springer,1996.
|
20 |
YANG L, MENG X, KARNIADAKIS G E .B-PINNs:Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J].Journal of Computational Physics,2021,425:109913/1-23.
|
21 |
OLIVIER A, SHIELDS M D, GRAHAM-BRADY L .Bayesian neural networks for uncertainty quantification in data-driven materials modeling[J].Computer Methods in Applied Mechanics and Engineering,2021,386:114079/1-27.
|
22 |
冯蔚 .基于深度学习的多孔介质中多相流预测及不确定性分析[D].合肥:中国科学技术大学,2020.
|
23 |
LAU K, GUO W, KIERNAN B .Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization[J].Sensors and Actuators B:Chemical,2009,136(1):242-247.
|
24 |
HERNÁNDEZ-LOBATO J M, LI Y, ROWLAND M,et al .Black-box α-divergence minimization[C]∥ Proceedings of the 33rd International Conference on Machine Learning.New York:PMLR,2016:1511-1520.
|
25 |
BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K,et al .Weight uncertainty in neural networks[C]∥ Proceedings of the 32nd International Conference on Machine Learning.Lille:PMLR,2015:1613-1622.
|
26 |
SHEN C .The statistical analysis of fatigue data[D].Tucson:University of Arizona,1994.
|
27 |
HOVORNYAN A V, ILASHCHUK T O .An artificial intelligence model to predict 12-month mortality among patients with myocardial infarction[J].European Journal of Preventive Cardiology,2022,29():i436-i437.
|
28 |
TIPU A J S, CONBHUÍ P Ó, HOWLEY E .Applying neural networks to predict HPC-I/O bandwidth over seismic data on Lustre file system for ExSeisDat[J].Cluster Computing,2022,25:2661-2682.
|
29 |
MISTRY J, INDEN B .An approach to sign language translation using the Intel RealSense camera[C]∥ Proceedings of 2018 the 10th Computer Science and Electronic Engineering.Colchester:IEEE,2018:219-224.
|
30 |
HERYANTO A, GUNANTA A .High availability in server clusters by using backpropagation neural network method[J].Jurnal Teknologi dan Open Source,2021,4(1):8-18.
|
31 |
FENG De-Cheng, LIU Zhen-Tao, WANG Xiao-Dan,et al .Machine learning-based compressive strength prediction for concrete:an adaptive boosting approach[J].Construction and Building Materials,2020,230:117000/1-11.
|
32 |
刘志状,吴昊 .一种基于参数影响的数据驱动下的疲劳寿命预测方法[J].机械工程学报,2023,59(4):71-79.
|
|
LIU Zhizhuang, WU Hao .A data-driven fatigue life prediction method based on the influence of parameters[J].Journal of Mechanical Engineering,2023,59(4):71-79.
|
33 |
HASTIE T, TIBSHIRANI R, FRIEDMAN J .The elements of statistical learning:data mining,inference,and prediction[M].2nd ed.New York:Springer,2009.
|