华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (12): 30-40.doi: 10.12141/j.issn.1000-565X.210541
所属专题: 2022年计算机科学与技术
余陆斌1,2 田联房1,3,4 杜启亮1,4,5
YU Lubin1,2 TIAN Lianfang1,3,4 DU Qiliang1,4,5
摘要:
目标跟踪在计算机视觉任务中有重要的意义。近年来随着深度学习的发展,基于孪生网络的目标跟踪算法因其优异的性能而被广泛应用。然而,现有基于孪生网络的跟踪算法在目标发生较大形变、低分辨率、复杂背景等情况下的跟踪性能通常会显著下降。为此,文中提出了一种基于多分支注意力孪生网络的目标跟踪算法。该算法首先构建了超分辨率模块和数据增强模块,分别对目标模板进行超分辨率和数据增强,提升目标模板的特征表征能力;然后利用3个主干网络分别提取原始目标模板、超分辨率目标模板和数据增强目标模板的特征,并进行特征融合,同时在主干网络中应用了通道注意力模块和空间注意力模块,以提升特征提取能力;最后,将融合后的特征图与待搜索区域的特征图输入区域生成网络模块,得到目标跟踪信息。实验结果表明,该算法在OTB100数据集上的精确率为0.919、成功率为0.707,在VOT2018数据集上的准确率为0.642、鲁棒性为0.149,在实际场景中的运行速度每秒至少20次,说明该算法具有优异的跟踪性能,并且在各种复杂场景下都具有良好的鲁棒性。
中图分类号: