华南理工大学学报(自然科学版) ›› 2003, Vol. 31 ›› Issue (3): 53-56.

• 数学科学 • 上一篇    下一篇

在 RN 上的拟线性椭圆型方程正解的存在性

傅红卓 姚仰新 沈尧天   

  1. 华南理工大学 应用数学系‚广东 广州510640
  • 出版日期:2003-03-20 发布日期:2022-04-22
  • 通信作者: 傅红卓(1966-)‚女‚副教授‚主要从事偏微分方程研究.
  • 作者简介:傅红卓(1966-)‚女‚副教授‚主要从事偏微分方程研究.
  • 基金资助:
    国家自然科学基金资助项目(10171032);广东省自然科学基金资助项目(011606)

Existenceof PositiveSolutions for Quasilinear Elliptic Equations in RN

Fu Hong-zhuo Yao Yang-xin Shen Yao-tian   

  1. Dept.of Applied Mathematics‚South China Univ.of Tech.‚Guangzhou510640‚China
  • Online:2003-03-20 Published:2022-04-22
  • Contact: 傅红卓(1966-)‚女‚副教授‚主要从事偏微分方程研究.
  • About author:傅红卓(1966-)‚女‚副教授‚主要从事偏微分方程研究.

关键词: 临界指数, 集中紧原理, 山路几何, 正解

Abstract: This paper is concerned with the existence of the weak positive solution of the following nonlinear Dirichlet problem on some conditions:-div(|∇u|p-2 ∇u)+ a(x) u p-1 = h(x) u q + u p ∗ -1 ‚x ∈ R N ‚u ≥0‚u ≢0‚∫R Na(x)|u|p dx <+∞.Where a: R N →R is continuous and nonnegative‚h: R N →R is some integrable function and2≤p<N‚p2 ≤ N‚0<q< p2 (p-1)N-p-1‚p ∗ =NpN-p .Some results as p=2or sub-critical exponent are generalized toP-Laplacian and critical exponent on weaker conditions‚and some results as a(x)=0are generalized too.

Key words:  critical exponent, concentration compactness principle, Mountain Pass Geomtry, positive solution

中图分类号: