华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (10): 11-21,40.doi: 10.12141/j.issn.1000-565X.200671

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

适用于地铁异物前景检测的神经网络———DifferentNet

刘伟铭1 温俊锐1† 郑仲星1 戴愿1 李泓道2   

  1. 1. 华南理工大学 土木与交通学院,广东 广州 510640; 2. 广州地铁集团有限公司,广东 广州 510030
  • 收稿日期:2020-11-05 修回日期:2021-04-30 出版日期:2021-10-25 发布日期:2021-09-30
  • 通信作者: 温俊锐 ( 1995-) ,男,硕士生,主要从事智能交通与机器视觉研究。 E-mail:aweak001@163.com
  • 作者简介:刘伟铭 ( 1963-) ,男,博士,教授,主要从事智能交通/轨道交通安全保障、设计研究。E-mail:mingweiliu@126.com
  • 基金资助:
    国家 “十三五”重点研发计划 ( 2016YFB1200402) ; 2015 年广东省高端装备制造产业标准编制项目

DifferentNet: Neural Network for Foreign Objects Foreground Detection in Metro

LIU Weiming1 WEN Junrui1 ZHENG Zhongxing1 DAI Yuan1 LI Hongdao 2   

  1. 1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China; 2. Guangzhou Metro Group Co. ,Ltd. ,Guangzhou 510030,Guangdong,China
  • Received:2020-11-05 Revised:2021-04-30 Online:2021-10-25 Published:2021-09-30
  • Contact: 温俊锐 ( 1995-) ,男,硕士生,主要从事智能交通与机器视觉研究。 E-mail:aweak001@163.com
  • About author:刘伟铭 ( 1963-) ,男,博士,教授,主要从事智能交通/轨道交通安全保障、设计研究。E-mail:mingweiliu@126.com
  • Supported by:
    Supported by the National “13th Five Year Plan”Key R&D Plan Project ( 2016YFB1200402 ) and 2015 Guangdong High End Equipment Manufacturing Industry Standard Preparation Project

摘要: 针对地铁站屏蔽门与列车门间隙空间异物检测问题,提出了一种结合语义分割 与背景参考的前景检测方法。该方法通过深度神经网络 DifferentNet 检测图像中的异物 区域,首先,在列车停靠站台的过程中采集背景图片和待检测图片,通过网络的编码部 分提取图像的特征信息得到特征金字塔,将两幅图片的特征图连接,再由解码部分计算 特征差异得到待检测图片的前景热力图,最后经阈值分割和轮廓筛选得到检测结果。实 验结果表明,该方法的前景交并比 ( cIoU) 达 81.2% ,调和均值 F1 达 89.5%,运行速率 为 30 帧/s,与传统方法及无背景参考的图像分割网络相比,取得了更好的效果。

关键词: 地铁, 异物检测, 深度学习, 语义分割, 前景检测

Abstract: A foreground detection method based on semantic segmentation and background reference was proposed to solve the problem of foreign objects detection in the space between platform screen doors and train doors in metro stations. This method used a depth neural network—DifferentNet to detect foreign objects region in images. Firstly, the background image and the image to be detected were obtained during a metro stop at the platform. The feature pyramid was obtained by extracting the feature information of the images through the encoding part of the network, and feature maps of the two images were merged by concatenation. Then the foreground heat map of the image to be detected was obtained by calculating the feature difference in the decoding part. Finally,the heat map was thresholded and filtered to get detection results. The results show that this method can achieve a high foreground IoU of 81. 2% and F1-score of 89. 5% . Furthermore,it reached 30 fps in speed. The proposed method performed better than traditional methods and other image segmentation networks without background reference.

Key words: metro, foreign object detection, deep learning, semantic segmentation, foreground detection

中图分类号: