华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (10): 50-58,69.doi: 10.12141/j.issn.1000-565X.200764

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于机器视觉的建筑垃圾填料物质组分图像分析方法

谢康1 陈晓斌1† 尧俊凯2 苏谦3 陈龙1 吴梦黎1   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410083; 2. 中国铁道科学研究院集团有限公司,北京 100081; 3. 西南交通大学 土木工程学院,四川 成都 610000
  • 收稿日期:2020-12-14 修回日期:2021-04-25 出版日期:2021-10-25 发布日期:2021-09-30
  • 通信作者: 陈晓斌 ( 1978-) ,男,博士,教授,主要从事交通岩土工程研究。 E-mail:chen_xiaobin@csu.edu.cn
  • 作者简介:谢康 ( 1995-) ,男,博士生,主要从事智能建设研究。E-mail:xiekang1995@csu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 ( 51978674)

Image Analysis Method of Construction Waste Filler Material Components Based on Machine Vision

XIE Kang1 CHEN Xiaobin1 YAO Junkai2 SU Qian3 CHEN Long1 WU Mengli1   

  1. 1. School of Civil Engineering,Central South University,Changsha 410083,Hunan,China; 2. China Academy of Railway Sciences,Beijing 100081,China. 3. School of Civil Engineering,Southwest Jiaotong University,Chengdu 610000,Sichuan,China
  • Received:2020-12-14 Revised:2021-04-25 Online:2021-10-25 Published:2021-09-30
  • Contact: 陈晓斌 ( 1978-) ,男,博士,教授,主要从事交通岩土工程研究。 E-mail:chen_xiaobin@csu.edu.cn
  • About author:谢康 ( 1995-) ,男,博士生,主要从事智能建设研究。E-mail:xiekang1995@csu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 51978674)

摘要: 建筑垃圾再生填料是从建筑垃圾中经过粉碎而获得的,其组成成分具有多样 性,需经过分拣等处理后才可用于路基填筑。目前多采用耗时的人工筛选法进行获取。 本文利用卷积神经网络进行图像分析,可以自动实时地获取再生填料组成。首先创建一 个由 36000 张颗粒图像组成的带标签数据集,对不同 CNN 模型进行训练。其中,使用 40% 的 Dropout 比率自定义 ResNet34 模型表现最优,其验证精度可达97% ; 其次基于所 识别的颗粒类别与颗粒形状估计颗粒的质量; 最后将本文提出的方法与人工筛选法进行 了比较,对于大多数再生填料质量差异低于 2% 。本文旨在提高建筑垃圾利用空间,对 建筑垃圾回填路基工程的推广应用具有重要意义。

关键词: 建筑垃圾, 再生填料, 卷积神经网络, 深度学习, 图像识别

Abstract: Construction waste recycling filler is obtained from construction waste by crushing. Due to its diversified composition,It can be used for subgrade filling only after sorting. At present,manual screening method is timeconsuming. In this paper,convolution neural network was used for image analysis and the composition of regenerated packing can be obtained automatically. Firstly,a labeled dataset composed of 36000 granular images is created to train different CNN models. Among them,the user-defined resnet34 model with 40% Dropout rate performs the best,and its verification accuracy can reach 97% . Secondly,the mass of particles was estimated based on the particle type and shape. Finally,the method proposed in this paper was compared with the manual screening method. For most recycled fillers,the quality difference is less than 2% . This paper aims to improve the utilization of construction waste and it is of great significance to the popularization and application of construction waste backfill subgrade engineering.

Key words: construction waste, recycled filler, convolutional neuron network, deep learning, image identification

中图分类号: