华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (12): 43-52.doi: 10.12141/j.issn.1000-565X.200628

所属专题: 2021年机械工程

• 机械工程 • 上一篇    下一篇

基于贝叶斯BiLSTM模型的核电阀位传感器故障预警方法

游东东黎家良刘高俊杨汕1   

  1. 1.华南理工大学  机械与汽车工程学院,广东  广州 510640;2.中广核工程有限公司  核电安全监控技术与
    装备国家重点实验室,广东  深圳 518172

  • 收稿日期:2020-10-22 修回日期:2021-04-16 出版日期:2021-12-25 发布日期:2021-12-01
  • 通信作者: 游东东(1973-),男,博士,副教授,主要从事金属成形过程数值模拟、数字化制造与智能制造、工业大数据等研究。 E-mail:youdd@scut.edu.cn
  • 作者简介:游东东(1973-),男,博士,副教授,主要从事金属成形过程数值模拟、数字化制造与智能制造、工业大数据等研究。
  • 基金资助:
    国家自然科学基金资助项目(51875209);广东省科技计划项目(2021A0505030005);广东省基础与应用基础研究基金资助项目(2019B1515120060);核电安全监控技术与装备国家重点实验室开放基金资助项目(K-A2020.408)

Fault Early Warning Method Of Nuclear Valve Position Sensor Based On Bayesian LSTM Model

YOU Dongdong1 LI Jialiang1 LIU Gaojun2 YANG Shan1   

  1. 1. School of Mechanical andAutomotive Engineering, South China University of Technology, Guangzhou 510630, Guangdong, 
    China; 2. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power 
    Engineering Co. Ltd., Shenzhen 518172, Guangdong, China
  • Received:2020-10-22 Revised:2021-04-16 Online:2021-12-25 Published:2021-12-01
  • Contact: 游东东(1973-),男,博士,副教授,主要从事金属成形过程数值模拟、数字化制造与智能制造、工业大数据等研究。 E-mail:youdd@scut.edu.cn
  • About author:游东东(1973-),男,博士,副教授,主要从事金属成形过程数值模拟、数字化制造与智能制造、工业大数据等研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China(51875209),the Science and Technology Planning Project of Guangdong Province(2021A0505030005)and the Guangdong Basic and Applied Basic Research Foundation(2019B1515120060)

摘要: 研究大型核电设备的故障预警方法,对于故障的及时排除、降低安全风险、减少非必要成本以及提高发电效率具有深远的意义。传统的核电设备预警,大多是实时监控报警系统,预警效果有待提升,也未充分利用数据价值。文中提出了一种基于贝叶斯BiLSTM的故障预警方法,通过神经网络预测时间节点理论健康值,与实际值比较从而识别异常。首先提取实时数据库中健康的历史运行数据,然后对其进行一系列预处理,最后作为训练数据建立贝叶斯BiLSTM预测模型。采用交叉验证方法留出测试集,使用拟合优度、均方误差以及文中提出的贝叶斯假设检验方法对模型精度进行综合验证。保证模型泛化能力后,对实时数据库中的数据进行实时预测,并采用阈值法对故障蠕变期间的异常信号进行识别。实验结果表明:所建立的贝叶斯BiLSTM预测模型在时延高的情况下,相比于LSTM模型具有更优的预测精度;在案例1中,针对3次时间序列异常点,文中模型相比于现有的实时监控系统至少提前了15h发现信号异常并进行报警;案例2的预测结果进一步验证了模型的可靠性。


关键词: 核电设备, 故障预警, 贝叶斯BiLSTM;拟合优度, 均方误差, 预测精度

Abstract: The research on fault early warning method of large-scale nuclear power equipment has far-reaching significance for timely troubleshooting, reducing safety risks, cutting unnecessary costs and improving power generation efficiency. However, most of the traditional fault early warning systems of nuclear power equipment are real-time monitoring and alarm systems and havent made full use of the data value, so their early warning effects need to be improved. This paper proposed a fault early warning method based on Bayesian LSTM. The theoretical health value of time node was predicted by neural network and was compared with the actual value to find out the abnormal value. Firstly, the healthy historical operation data was extracted from the real-time database, and then a series of preprocessing were carried out on these data. Finally, the processed data was used as training set to establish the LSTM prediction model. The cross validation method was used to reserve the test set, and the goodness of fit, mean square error and Bayesian hypothesis test method proposed in this paper were used to comprehensively verify the accuracy of the model. After the generalization ability of the model was guaranteed, the data in the real-time database was predicted in real time, and the abnormal signals during fault creep were identified by threshold method. The experimental results show that the Bayesian-BiLSTM prediction model has better prediction accuracy than the LSTM model in the case of high time delay. In case 1, for the three time series outliers, the model proposed in this paper finds the abnormal signal and gives an alarm at least 15 hours in advance compared with the existing real-time monitoring systems, and its reliability is further verified by case 2.

Key words:

nuclear power equipment, fault early warning, Bayesian-BiLSTM, goodness of fit, mean-square error, prediction accuracy

中图分类号: