华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (1): 29-38,46.doi: 10.12141/j.issn.1000-565X.200513

所属专题: 2021年计算机科学与技术

• 计算机科学与技术 • 上一篇    下一篇

基于半监督学习的涉及未成年人案件文书识别方法

杨圣豪 吴玥悦 毛佳昕 刘奕群 张敏 马少平   

  1. 清华大学 计算机科学与技术系/ /北京信息科学与技术国家研究中心,北京 100084
  • 收稿日期:2020-08-25 修回日期:2020-10-17 出版日期:2021-01-25 发布日期:2021-01-01
  • 通信作者: 刘奕群 ( 1981-) ,男,博士,教授,主要从事网络信息检索、网络用户行为分析研究。 E-mail:yiqunliu@tsinghua.edu.cn
  • 作者简介:杨圣豪 ( 1998-) ,男,主要从事信息检索研究。E-mail: yangsh824@gmail.com
  • 基金资助:
    国家重点研发计划项目 ( 2018YFC0831700) ; 国家自然科学基金资助项目 ( 61732008,61532011)

Juvenile Case Documents Recognition Method Based on Semi-Supervised Learning

Sheng-Hao YANG1,   

  1. Department of Computer Science and Technology / /Beijing National Research Center for Information Science and Technology, Tsinghua University,Beijing 100084,China
  • Received:2020-08-25 Revised:2020-10-17 Online:2021-01-25 Published:2021-01-01
  • Contact: 刘奕群 ( 1981-) ,男,博士,教授,主要从事网络信息检索、网络用户行为分析研究。 E-mail:yiqunliu@tsinghua.edu.cn
  • About author:杨圣豪 ( 1998-) ,男,主要从事信息检索研究。E-mail: yangsh824@gmail.com
  • Supported by:
    Supported by the National Key R&D Program of China ( 2018YFC0831700) and the National Natural Science Foundation of China ( 61732008,61532011)

摘要: 案件文书作为司法信息公开的重要内容,需要在审判之后向公众公开,某些涉 及未成年人的案件文书极有可能会造成未成年人的个人隐私信息泄露。为了能从大量案 件文书中准确地识别出涉及未成年人信息的文书,进而有针对性地对其进行隐私保护处 理。同时,为解决现实数据集因有标注样本缺乏而难以进行有效的有监督学习的问题, 文中提出了基于半监督学习的涉及未成年人案件文书识别方法。首先,对案件文书语料 文本进行预处理后分别使用 Word2Vec 和 BERT-wwm-ext 对文本进行特征提取,将长语 料文本转换为可作为分类模型输入的数据格式; 接着,采用 PU 学习方法训练分类模 型,在正例样本极少的情况下借助大量未标注样本构建有效的分类器; 然后,在分类模 型预测结果的基础上,使用主动学习方法获取关键词并对模型预测结果进行筛选处理, 以进一步提升预测效果。在基于现实场景比例构建的测试集上,文中提出的案件文书识 别方法取得了 98. 67% 的召回率和 81. 02% 的准确率。

关键词: 文本分类, 文本特征提取, 深度学习, 半监督学习

Abstract: As an important content of judicial information disclosure,case documents should be disclosed to the public after the trial. Some case documents involving juvenile are likely to cause the disclosure of juvenile personal privacy information. In order to conduct targeted privacy protection processing,the first step is to accurately identify documents involving juvenile information from a large number of case documents. At the same time,in order to solve the problem of difficulty in effective supervised learning due to the lack of labeled samples in the real data set,this paper proposed a juvenile case documents recognition method based on semi-supervised learning. Firstly, the corpus text of the case document was pre-processed,and then the features of the text were extracted with Word2Vec and BERT-wwm-ext. After the above processing,the long corpus text was converted into the data format that can be used as the input for the classification model. Then the classification model was trained with the PU learning method,and an effective classifier was constructed with a large number of unlabeled samples under the condition of few positive examples. Then,based on the prediction results of the classification model,active learning method was employed to obtain keywords and screen the prediction results,so as to further improve the prediction effect. Finally,the case documents recognition method proposed in this article achieves a recall of 98. 67% and a precision of 81. 02% on the test set constructed based on the proportion of real scenes.

Key words: text classification, text feature extraction, deep learning, semi-supervised learning

中图分类号: