华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (6): 77-87,99.doi: 10.12141/j.issn.1000-565X.200430

所属专题: 2021年计算机科学与技术

• 计算机科学与技术 • 上一篇    下一篇

基于多阶融合与循环聚合的立体匹配网络

张瑞峰任国明李锵段子阳1,2   

  1. 1.天津大学 微电子学院,天津 300072;2.中国电子科技集团公司 第五十三研究所,天津 300300
  • 收稿日期:2020-07-24 修回日期:2020-11-16 出版日期:2021-06-25 发布日期:2021-06-01
  • 通信作者: 张瑞峰(1974-),男,博士,副教授,主要从事机器视觉研究。 E-mail:zhangruifeng@tju.edu.cn
  • 作者简介:张瑞峰(1974-),男,博士,副教授,主要从事机器视觉研究。
  • 基金资助:
    国家自然科学基金资助项目(61471263);天津市自然科学基金资助项目(16JCZDJC31100)

Stereo Matching Network Based on Multi-Stage Fusion and Recurrent Aggregation

ZHANG Ruifeng REN Guoming LI Qiang DUAN Ziyang   

  1. 1. School of Microelectronics, Tianjin University, Tianjin 300072, China;2. The 53th Research Institute of China 
    Electronics Technology Group Corporation, Tianjin 300300, China
  • Received:2020-07-24 Revised:2020-11-16 Online:2021-06-25 Published:2021-06-01
  • Contact: 张瑞峰(1974-),男,博士,副教授,主要从事机器视觉研究。 E-mail:zhangruifeng@tju.edu.cn
  • About author:张瑞峰(1974-),男,博士,副教授,主要从事机器视觉研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China(61471263) and the Tianjin Municipal Natural Science Foundation(16JCZDJC31100)

摘要: 针对基于深度学习的立体匹配网络中病态区域匹配效果欠佳、模型参数量过大的问题,提出了一种基于多阶特征融合与循环代价聚合的端对端立体匹配网络—MFRANet。首先,为兼顾图像低层细节信息与高层语义信息,提出了多阶特征融合模块,采用分阶段、逐步式的特征融合策略对多层次、多尺度特征进行有效融合;其次,在代价聚合阶段提出循环聚合机制,以循环方式对匹配代价卷进行聚合优化,在改善聚合效果的同时不引入过多的参数量;最后,利用基于Soft Argmin算法的视差计算模块计算图像视差。并通过KITTI 2012/2015和SceneFlow两个公开数据集对网络进行训练和测试,与其他端对端立体匹配网络进行了对比研究。结果表明,在SceneFlow和KITTI 2015两个公开数据集上,相较于其他端对端立体匹配网络,MFRANet具有更为精准的匹配结果;对于SceneFlow数据集,终点误差降低至0.92Pixels;对于KITTI 2015数据集,误匹配率降低至2.21%。

关键词: 端对端立体匹配网络, 多阶特征融合, 循环代价聚合, 终点误差, 误匹配率

Abstract: Aiming at the poor matching effect of ill-conditioned regions and excessive model parameters in the stereo matching network based on deep learning, an end-to-end stereo matching network based on multi-level feature fusion and recurrent cost aggregation(MFRANet)was proposed. Firstly, in order to take into account both the low-level detail information and high-level semantic information of the image, a multi-stage feature fusion module, which uses a phased and step-by-step feature fusion strategy to effectively fuse multi-level and multi-scale features, was proposed. Secondly, a recurrent mechanism was proposed in the cost aggregation stage to optimize the aggregation of the matching cost volume in a recurrent manner, and it can improve the aggregation effect while avoid introducing too many parameters. Finally, the disparity calculation module based on the Soft Argmin algorithm was used to calculate the image disparity. And through the two public datasets of KITTI 2012/2015 and SceneFlow, the network was trained and tested, and a comparative study with other end-to-end stereo matching networks was caaried out. Experimental results show that, for the two public datasets of SceneFlow and KITTI 2015, MFRANet has more accurate matching results than other end-to-end stereo matching networks; for the SceneFlow dataset, the end-point error is reduced to 0.92 pixels; for the KITTI 2015 dataset, the mismatching rate is reduced to 2.21%.

Key words: end-to-end stereo matching network, multi-stage feature fusion, recurrent cost aggregation, end-point error, mismatching rate

中图分类号: