华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (4): 124-139.doi: 10.12141/j.issn.1000-565X.180463

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

交通拥堵判别方法研究综述

贾若 戴昇宏 黄霓 李水滢 刘志远   

  1. 东南大学 交通学院,江苏 南京 211189
  • 收稿日期:2018-09-20 修回日期:2020-04-29 出版日期:2021-04-25 发布日期:2021-04-01
  • 通信作者: 刘志远(1984-),男,教授,博士生导师,主要从事交通网络规划与管理、交通大数据分析与建模研究和公共交通、多模式物流网络、智能交通系统等研究。 E-mail:zhiyuanl@seu.edu.cn
  • 作者简介:贾若(1994-),男,博士生,主要从事交通大数据分析与建模研究。E-mail:jiaruo34@qq.com
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1600900);国家自然科学基金青年基金优秀青年基金(71922007)

Literature Review on Traffic Congestion Identification Methods

JIA Ruo DAI Shenghong HUANG Ni LI Shuiying LIU Zhiyuan   

  1. School of Transportation,Southeast University,Nanjing 211189, Jiangsu, China
  • Received:2018-09-20 Revised:2020-04-29 Online:2021-04-25 Published:2021-04-01
  • Contact: 刘志远(1984-),男,教授,博士生导师,主要从事交通网络规划与管理、交通大数据分析与建模研究和公共交通、多模式物流网络、智能交通系统等研究。 E-mail:zhiyuanl@seu.edu.cn
  • About author:贾若(1994-),男,博士生,主要从事交通大数据分析与建模研究。E-mail:jiaruo34@qq.com
  • Supported by:
    Supported by the National Key Research and Development Program of China(2018YFB1600900) and the Distinguished Young Scholar Project of the National Natural Science Foundation of China(71922007)

摘要: 交通拥堵是诸多交通问题中出现最多、范围最广、影响最大的问题,解决此问题的关键是对交通拥堵的判别与分析。文章从传统交通流理论与机器学习两方面综述了交通拥堵判别的方法,前者通过指标、宏观基本图、元胞自动机、元胞传输以及双流模型等模型,运用物理学与数学的理论描述交通行为特性,模型合理简单、有明确的物理意义,但限制条件较多;后者通过概率图模型、机器学习模型,建立的模型实用准确、不受固定结构约束。文中结合具体的模型方法探讨了不同拥堵判别方法的研究思路、解决方案以及存在问题,对现有的传统交通流理论方法和机器学习方法进行总结,并指出未来的发展方向。

关键词: 交通拥堵, 拥堵判别, 传统交通流理论方法, 机器学习方法 

Abstract: Traffic congestion is the most frequent, wide-ranging and influential problem among all the traffic problems. The key to this problem is to identify and analyze traffic congestion. This paper reviewed the methods of traffic congestion identification from the perspectives of traditional traffic flow theory and machine learning. Traditional traffic flow theory adopts models such as indicators, MFD, cellular automata, CTM and dual-flow models, using the theory of physics and mathematics to describe the traffic behavior characteristics. The models are reasonable and simple, with clear physical meaning and also with many restrictions. The probabilistic graphical model and machine learning model are practical and not constrained by fixed structures. This paper discussed the research ideas, solutions and existing problems of different congestion identification methods by combining the specific model methods. It summarized the existing traditional traffic flow theory methods and machine learning methods, and pointed out the future development direction.


Key words: traffic congestion, congestion identification, traditional traffic flow theory, machine learning method

中图分类号: