华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (3): 10-17.doi: 10.12141/j.issn.1000-565X.190530

• 电子、通信与自动控制 • 上一篇    下一篇

面向污水处理过程的预测元-RVM 故障诊断建模

程洪超 吴菁 刘乙奇 黄道平
  

  1. 华南理工大学 自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2019-08-20 修回日期:2019-09-16 出版日期:2020-03-25 发布日期:2020-03-01
  • 通信作者: 刘乙奇(1983-),博士,副教授,主要从事软测量、故障诊断研究。 E-mail:aulyq@scut.edu.cn
  • 作者简介:程洪超(1992-),男,博士生,主要从事故障诊断和故障预测研究。E-mail:auhccheng@163.com
  • 基金资助:
    国家自然科学基金资助项目(61873096,61673181);广州市科技计划项目(201804010256)

Forecast Components-RVM Fault Detection Modeling for Wastewater Treatment

CHENG Hongchao WU Jing LIU Yiqi HUANG Daoping   

  1. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2019-08-20 Revised:2019-09-16 Online:2020-03-25 Published:2020-03-01
  • Contact: 刘乙奇(1983-),博士,副教授,主要从事软测量、故障诊断研究。 E-mail:aulyq@scut.edu.cn
  • About author:程洪超(1992-),男,博士生,主要从事故障诊断和故障预测研究。E-mail:auhccheng@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (61873096, 61673181) 

摘要: 污水处理系统是一个复杂的非线性大系统,存在作业环境恶劣、控制目标复杂 等问题。这些问题导致污水厂故障频发,因此急需开发高效的监测技术。本研究提出了 一种新的故障监测技术,即预测元-相关向量机方法。该方法是将可预测元算法与相关 向量机进行有机结合。首先利用可预测元算法对在污水厂采集的数据进行特征提取,去 除重复特征和冗余信息。然后,利用处理后的数据训练相关向量机模型。为了验证所提 方法的优越性,将预测元-相关向量机与相关向量机(RVM)、主元分析-相关向量机 (PCA-RVM)和独立元分析-相关向量机(ICA-RVM)3种方法同时用于监测国际水协 会提供的污水仿真基准平台(BSM1)。实验表明本研究所提方法诊断精度高于3种基础 方法。

关键词:

Abstract: As a complex nonlinear large-scale system, wastewater treatment plant (WWTP) faces problems such as bad working environment, complex control objectives. These problems often lead to fault of the system, so it is urgent to develop the efficient monitoring technology. This study proposed a new fault detection technology, namely, the forecast component-relevance vector machine, which combines the relevance vector machine with the forecastable component analysis. Firstly, the forecastable component algorithm is used to extract features information from the collected data of WWTPs, in order to remove duplicate features and redundant information. Then the relevance vector machine model is trained by offline data. In order to verify the superiority of the proposed method, the forecast component-relevance vector machine and another three methods (RVM, PCA-RVM, ICA-RVM) are used to monitor the wastewater treatment Benchmark Simulation Model 1 (BSM1) platform provided by the International Water Association. Experiments show that the fault detection accuracy of the forecast component-relevance vector machine is higher than the other three methods.

Key words: wastewater treatment, fault detection, relevance vector machine, forecastable component analysis, feature extraction

中图分类号: