华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (11): 33-43.doi: 10.12141/j.issn.1000-565X.180618

• 交通运输工程 • 上一篇    下一篇

基于纵向激励的驾驶习性分类及辨识方法

孙博华1 邓伟文1 何睿1† 吴坚1 李雅欣1 边宁2
  

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130022; 2. 东风汽车公司技术中心,湖北 武汉 430058
  • 收稿日期:2018-12-13 修回日期:2019-07-06 出版日期:2019-11-25 发布日期:2019-10-02
  • 通信作者: 何睿(1985-),男,博士,副教授,主要从事汽车智能化技术研究. E-mail:herui@jlu.edu.cn
  • 作者简介:孙博华(1988-),男,博士生,主要从事汽车智能化技术研究. E-mail: sunbh14@mails.jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目( 2016YFB0100904) ; 国家自然科学基金资助项目( U1564211,51775235,51605185)

Longitudinal Stimuli-Based Classification and Recognition Method for Driving Styles

SUN Bohua1 DENG Weiwen1 HE Rui1 WU Jian1 LI Yaxin1 BIAN Ning2   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,Jilin,China; 2. Dongfeng Motor Corporation,Wuhan 430058,Hubei,China
  • Received:2018-12-13 Revised:2019-07-06 Online:2019-11-25 Published:2019-10-02
  • Contact: 何睿(1985-),男,博士,副教授,主要从事汽车智能化技术研究. E-mail:herui@jlu.edu.cn
  • About author:孙博华(1988-),男,博士生,主要从事汽车智能化技术研究. E-mail: sunbh14@mails.jlu.edu.cn
  • Supported by:
    Supported by the National Key Research and Development Plan( 2016YFB0100904) and the National Natural Science Foundation of China( U1564211,51775235,51605185)

摘要: 为使先进驾驶人辅助系统更具人性化及个性化,提高智能车辆的驾乘安全性和舒适性,提出一种基于纵向激励工况的驾驶习性分类及辨识方法. 以前车车速信号的周期性及突变性为依据,设计 6 种前车典型纵向激励工况,并通过实车道路试验完成 64 位驾驶人的数据采集. 然后,采用客观粒子群聚类和主观量表分析相结合的分类方式,实现典型驾驶习性的分类和习性类型的定义. 比较各工况下的分类结果,确定纵向最优激励工况组为正弦工况 3 和阶跃工况 3. 建立基于多维高斯隐马尔科夫过程的驾驶习性辨识模型,依据辨识准确率得到最优模型输入信号组,利用正交试验法优化模型中的关键参数. 结果表明,基于纵向激励的驾驶习性分类及辨识方法能够得到更好的分类和辨识准确率.

关键词: 车辆工程, 驾驶习性, 粒子群聚类, 多维高斯隐马尔科夫过程, 先进驾驶人辅助

Abstract: A research on longitudinal stimuli-based classification and recognition for driving style were carried out to make Advanced Driver Assistance System ( ADAS) work in a more human-like or personalized way and to im- prove the safety and comfort for intelligent vehicles. Six typical longitudinal driving stimuli of the leading vehicle were designed based on the periodicity and mutability of the leading vehicle's speed,and data collection for 64 dri- vers was conducted in field test. The corresponding driving style was defined and classified by combining particle swarm optimization clustering ( PSO-Clustering) method with subjective questionnaire. The optimal longitudinal stimulus set,the Sine NO. 3 and Step NO. 3,was obtained by comparing the classification results under different stimulus. The recognition model for driving styles based on the multi-dimension Gaussian hidden Markov process ( MGHMP) was modeled. And the optimal model input set was obtained based on the recognition accuracy and key parameters were optimized by the orthogonal test method. Results show that the longitudinal stimuli based classifica- tion and recognition for driving styles can achieve better classification and identification accuracy.

Key words: vehicle engineering, driving style, particle swarm clustering, multi-dimension Gaussian hidden Mar- kov process, advanced driver assistance system

中图分类号: