华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (12): 1-8.doi: 10.12141/j.issn.1000-565X.180161

• 机械工程 •    下一篇

基于云雾结合的工件深度学习识别问题研究

姚锡凡 蓝宏宇 陶韬 雷毅   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2018-03-30 修回日期:2019-05-28 出版日期:2019-12-25 发布日期:2019-11-02
  • 通信作者: 姚锡凡(1964-),男,博士,教授,博士生导师,主要从事智能制造、数字制造研究. E-mail:mexfyao@scut.edu.cn
  • 作者简介:姚锡凡(1964-),男,博士,教授,博士生导师,主要从事智能制造、数字制造研究.
  • 基金资助:
    国家自然科学基金资助项目( 51675186,51765007) ; 国家自然科学基金委员会与英国爱丁堡皇家学会合作交流项目( 51911530245) ; 华南理工大学中央高校基本科研业务费资助项目( D2181830)

Deep-Learning Recognition of Workpieces Based on Cloud and Fog Computing

YAO Xifan LAN Hongyu TAO Tao LEI Yi   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2018-03-30 Revised:2019-05-28 Online:2019-12-25 Published:2019-11-02
  • Contact: 姚锡凡(1964-),男,博士,教授,博士生导师,主要从事智能制造、数字制造研究. E-mail:mexfyao@scut.edu.cn
  • About author:姚锡凡(1964-),男,博士,教授,博士生导师,主要从事智能制造、数字制造研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 51675186,51765007) and the NSFC-RSE ( 51911530245)

摘要: 统工业自动分拣存在工件识别准确率不高、特征定义复杂等问题,虽然新兴的深度学习为此类问题提供了较好的解决方法,但仍存在对边缘端设备计算能力要求较高的问题,为此本文提出一种基于云雾结合的工件识别算法,即在云端采用改进 ALEXNET 卷积神经网络进行训练,然后将训练好的模型下载到雾( 边缘) 端设备,对工件进行实时识别. 对 100 个不同工件进行实验,结果表明: 改进后识别准确率从 ALEXNET 的 98% 提高到 99% ,模型参数减少 25% ,同时可以充分利用云端的强大计算能力与边缘设备的实时性,为智能工件识别提供了一种新途径.

关键词:

Abstract: Traditional industrial automatic sorting method is confronted with the problems such as low accuracy of workpiece identification and complex definition of features. Although deep-learning provides a good solution to such problems,there remains the problem of high computational requirements for edge-end equipment. Thus a deep- learning recognition algorithm based on fog and cloud computing was proposed,in which an improved ALEXNET convolution neural network ( CNN) is used for training in the cloud. Then,the trained CNN is downloaded to the fog ( edge) device to recognize workpieces in real time. The results of the experiment carried on 100 different workpieces show that accuracy of the proposed workpiece recognition algorithm is improved from 98% of ALEXNET to 99% ,and the model parameters are reduced by 25% . The workpiece recognition algorithm can fully utilize the powerful cloud computing capabilities and the real-time nature of edge devices,and provide a novel way for intelli- gent recognition of workpieces.

Key words: deep-learning, workpiece recognition, cloud computing, fog computing

中图分类号: