华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (2): 68-76,2.doi: 10.12141/j.issn.1000-565X.180233

• 计算机科学与技术 • 上一篇    下一篇

鲁棒车载热成像行人检测的感兴趣区域提取方法

徐哲炜 许瑞霖 刘琼   

  1. 华南理工大学 软件学院,广东 广州 510006
  • 收稿日期:2018-05-17 修回日期:2018-12-01 出版日期:2019-02-25 发布日期:2019-01-02
  • 通信作者: 刘琼( 1959-) ,女,教授,博士生导师,主要从事模式识别、行人检测研究 E-mail:liuqiong@scut.edu.cn
  • 作者简介:徐哲炜( 1989-) ,男,博士生,主要从事物体检测、行人检测研究
  • 基金资助:
     广东省科技计划项目( 2017A020219008, 2017B090901047) ;广州市科技计划项目( 201607010069) 

Method of Extraction Regions of Interest for Robust Vehicle Thermal Imaging Pedestrian Detection
 

 XU Zhewei XU Ruilin LIU Qiong    

  1.  School of Software Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China
  • Received:2018-05-17 Revised:2018-12-01 Online:2019-02-25 Published:2019-01-02
  • Contact: 刘琼( 1959-) ,女,教授,博士生导师,主要从事模式识别、行人检测研究 E-mail:liuqiong@scut.edu.cn
  • About author:徐哲炜( 1989-) ,男,博士生,主要从事物体检测、行人检测研究
  • Supported by:
      Supported by the Science and Technology Planning Project of Guangdong Province ( 2017A020219008, 2017B090901047) 

摘要: 现有的感兴趣区域( RoI) 提取方法很难兼顾较高召回率和较少的 RoI 数量. 为了 降低计算开销和 RoI 数量,提高召回率,文中提出了适合车载热成像行人检测的 RoI 提取 方法:首先,根据行人边缘特征存在的方向差异性判断图像中可能的行人竖直边缘,增强 其幅值;接着,级联行人尺寸约束和自适应局部双阈值分割方法过滤滑窗产生的边界框, 滤除大量的非行人边界框;然后,根据行人的轮廓特征,采用 T 型模板对过滤后的边界框 进行得分评估,在保留可能的行人腿部信息的同时去除边界框内部的无关边缘; 最后,利 用行人的强尺寸约束重新排序 RoI,以便在提取固定数量的 RoI 时能提高召回率. 在热成 像行人检测数据集 SCUT DataSet 上进行对比实验,结果表明: 当每幅图像提取400 个 RoI 时,文中方法的召回率达92%,比 EdgeBox 方法的召回率提高21%,计算时间减少了 10%

关键词: 车载热成像, 行人检测, 感兴趣区域提取, 局部双阈值分割, 行人安全, 边缘检测 

Abstract: Current methods of extracting regions of interest are difficult to balance the high recall rate and the number of RoIs. To reduce the amount of computation and RoI,and increase recall rate,a RoIs extraction method suitable for robust vehicle thermal imaging pedestrian detection was proposed. First,the vertical edges of possible pedestrians in the image were judged according to the directional differences of pedestrian edge features,and their amplitude was enhanced. Then,the boundary boxes generated by sliding windows were filtered by cascade human dimension constraint and adaptive local double threshold segmentation method,and a large number of non-human boundary boxes were removed. Next,according to the outline characteristics of pedestrian,the filtered bounding boxes’score were evaluated by using a T-shaped template,and the unrelated edges inside the bounding boxes were removed while preserving possible pedestrians’leg information. Finally,the RoIs were reordered with the strong size constraint of pedestrians,so that the recall rate could be improved when a fixed amount of RoI was extracted. A contrast experiment was conducted on a thermal imaging pedestrian detection dataset called SCUT DataSet. The results show that when 400 RoIs are extracted from each image,the recall rate of our method reaches 92%; compared with the EdgeBox method,the recall rate increases by 21%,and the calculation time decreases by 10%.

Key words:  vehicle thermal imaging, pedestrian detection, regions of interest extraction, local double threshold segmentation, pedestrian safety, edge detection

中图分类号: