华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (4): 1-9.doi: 10.12141/j.issn.1000-565X.180321

• 电子、通信与自动控制 •    下一篇

基于隐藏主题概率模型的图像结构感知SISR重建方法

马丽红1 王小娥1 田菁2 张宇3   

  1. 1. 华南理工大学 电子与信息学院,广东 广州 510640; 2. 新加坡国立大学 系统科学研究所,新加坡 119615; 3. 华南理工大学 计算机应用工程研究所,广东 广州 510640
  • 收稿日期:2018-06-28 修回日期:2018-11-21 出版日期:2019-04-25 发布日期:2019-03-01
  • 通信作者: 马丽红(1965-),女,博士,教授,主要从事图像视频信号分析、多维信号重建和稀疏/容错编码研究. E-mail:eelhma@scut.edu.cn
  • 作者简介:马丽红(1965-),女,博士,教授,主要从事图像视频信号分析、多维信号重建和稀疏/容错编码研究.
  • 基金资助:
     国家自然科学基金资助项目(61471173);广东省自然科学基金重点资助项目(2017A030311028)

SISR Reconstruction Method of Image Structure Perception Based on Hidden Topic Probability Model

MA Lihong1 WANG Xiaoe1 TIAN Jing2 ZHANG Yu3   

  1.  1. School of Electronics & Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong, China; 2. Institute of System Science,National University of Singapore,Singapore 119615; 3. Institute of Computer Application Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2018-06-28 Revised:2018-11-21 Online:2019-04-25 Published:2019-03-01
  • Contact: 马丽红(1965-),女,博士,教授,主要从事图像视频信号分析、多维信号重建和稀疏/容错编码研究. E-mail:eelhma@scut.edu.cn
  • About author:马丽红(1965-),女,博士,教授,主要从事图像视频信号分析、多维信号重建和稀疏/容错编码研究.
  • Supported by:
     Supported by the National Natural Science Foundation of China(61471173) and the Key Program of the Natural Science Foundation of Guangdong Province(2017A030311028)

摘要: 在基于示例学习的单幅图像超分辨率(SISR)重建中,假设从低分辨率 (LR)到 高分辨率 (HR) 图像块的映射关系是一对一的,但同一 LR块会与多个 HR块对应,导致 了 LR与 HR块的匹配误差. 为解决 HR复原块的失配问题,文中首先导出了 LR块主题模 式的概率模型,引入信号的隐藏主题这一种新的观察信息. 然后提出了一种基于块主题差 异和上下文最大概率的结构感知复原机制,通过主题模式与邻域块内容的关联,形成 LR块的流形描述;在重构中通过自适应主题决策树选择和节点回归矩阵映射,从相似的 LR流形信号中准确区分和复原 HR信号. 主题模型优化实验结果表明,文中基于主题约束信 息的算法比未引入隐藏主题的决策树 SISR方法的峰值信噪比(PSNR)值提升了 0. 25dB; 在 5 种算法的对比实验中,相对于稀疏字典 SISR方法,文中方法的 PSNR值平均提升了 0. 92dB,表明引入隐藏的主题信息和主题流形结构辨识是可行的.

关键词: 超分辨率重建, 主题概率模型, 结构感知, 流形约束, 节点回归映射

Abstract: In the process of single image super-resolution reconstruction (SISR) based on learning from examples, the mapping relation was assumed one-to-one from a low-resolution (LR) input to a high-resolution (HR) image patch. But in fact,one LR patch may relate to many HR patches,and thus leads to matching errors. To solve the mismatch problem of restored patch,the probability model of LR patch topic pattern was derived to express new observation information for hidden topics in LR signals. Then a structure-aware recovery mechanism with topic differences and context maximum probability was proposed,and LR manifold description was formed by relating topic modes to LR neighbor contents. The HR signal was accurately distinguished and reconstructed from similar LR manifold signals via an adaptive selection of topic decision trees and regression matrix of nodes. The topic mo- del optimization experiment demonstrates that the peak signal-to-noise ratio (PSNR) of our topic constraint SISR method is improved by 0. 25dB compared to that of the decision tree based SISR algorithm without introducing hid- den topics. In the comparative experiment of five algorithms,the average PSNR value of our SISR approach is im- proved by 0. 92dB compared to that of the sparse dictionary based SISR method. So the introduced hidden topic in- formation and topic-manifold structure identification are feasible.

Key words: super-resolution reconstruction, topic probability model, structure perception, manifold constraint, node regression mapping

中图分类号: