华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (10): 72-80.doi: 10.3969/j.issn.1000-565X.2018.10.010

• 电子、通信与自动控制 • 上一篇    下一篇

基于低秩增强的图像压缩感知重构算法

杨春玲 汤瑞东   

  1. 华南理工大学电子与信息学院
  • 收稿日期:2018-04-27 修回日期:2018-06-08 出版日期:2018-10-25 发布日期:2018-09-01
  • 通信作者: 杨春玲( 1970-) ,女,博士,教授,主要从事图像/视频压缩编码、图像质量评价研究. E-mail: eeclyang@scut.edu.cn
  • 作者简介:杨春玲( 1970-) ,女,博士,教授,主要从事图像/视频压缩编码、图像质量评价研究.
  • 基金资助:
     广东省自然科学基金重点资助项目( 2017A030311028) ;
    广东省自然科学基金资助项目( 2016A030313455) 

Low-rank Enhancement-Based Compressed Image Sensing Reconstruction Algorithm

YANG Chunling TANG Ruidong   

  1. School of Electronic and Information Engineering,South China University of Technology
  • Received:2018-04-27 Revised:2018-06-08 Online:2018-10-25 Published:2018-09-01
  • Contact: 杨春玲( 1970-) ,女,博士,教授,主要从事图像/视频压缩编码、图像质量评价研究. E-mail: eeclyang@scut.edu.cn
  • About author:杨春玲( 1970-) ,女,博士,教授,主要从事图像/视频压缩编码、图像质量评价研究.
  • Supported by:
    Key Program of Natural Science Foundation of Guangdong Province( 2017A030311028) and the Natural Science Foundation of Guangdong Province( 2016A030313455)

摘要: 现有较突出的自然图像压缩感知重构算法大多基于图像的非局部自相似性,因为相似块组具有更高的稀疏度,以相似块组作为重构基础比独立重构单一图像块具有更好的重构性能.但在低采样率条件下,受初始重构质量所限,大量干扰信息的出现导致相似块分组不理想,影响最终重构质量.针对此问题,本文在GSR算法的基础上提出一种低秩增强图像重构算法.首先在初始重构中引入三维块匹配去噪方法,提出混合滤波重构算法,为相似块分组提供更高质量初始重构图像.然后在相似块正式分组前进行低秩增强预处理,使得相似块分组过程更加关注图像块的关键特征,提高分组的正确度.仿真实验结果表明,所提算法和GSR算法相比,在低采样率条件下具有更好的重构性能.

关键词: 图像压缩感知, 低采样率, 混合滤波, 关键特征, 低秩增强 

Abstract: Most existing compressed image sensing algorithms with outstanding reconstruction performance are based on nonlocal self-similarity of natural images, for the reason that reconstruction based on similar-block groups is more prone to exploit sparsity than reconstruction merely based on individual blocks. But at low sampling rates, limited by poor quality of initial reconstruction results, accuracy of similar-block grouping is badly affected by massive reconstructed interference information, leading to an unsatisfying reconstruction result. To solve this problem, a low-rank enhancement reconstruction algorithm based on GSR is proposed. Firstly, a hybrid filtering reconstruction method is proposed in initial reconstruction that BM3D filtering is introduced to attain a better initially reconstructed result. Then a low-rank enhancement pretreatment is conducted before similar-block grouping to help grouping operation focus more on the key features. Simulation results indicate that compared with GSR, the proposed algorithm possesses a better reconstruction performance at low sampling rates.

Key words: compressed image sensing, low sampling rates, hybrid filtering, key features, lowrank enhancement

中图分类号: