华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (3): 134-141.doi: 10.3969/j.issn.1000-565X.2018.03.019

• 计算机科学与技术 • 上一篇    下一篇

基于直方图均化法的改进 Logistic 映射伪随机数 发生器设计及性能研究

李頔1 魏德敏1, 2†   

  1. 1. 华南理工大学 土木与交通学院,广东 广州 510640;
    2. 华南理工大学 亚热带建筑科学国家重点实验室,广东 广州 510640
  • 收稿日期:2017-11-07 修回日期:2017-12-12 出版日期:2018-03-25 发布日期:2018-03-01
  • 通信作者: 魏德敏(1955-),女,教授,博士生导师,主要从事工程结构防灾减灾研究 E-mail:dmwei@scut.edu.cn
  • 作者简介:李頔(1986-),男,博士生,主要从事大跨结构抗风研究
  • 基金资助:
    国家自然科学基金资助项目(51408227);华南理工大学中央高校基本科研业务费专项资金资助项目 (2015ZM001) 

A Study of an Improved Pseudo Generator Design of Random Number and Performance on the Basis of a Logistic Map of Histogram Homogenization Method
 

LI Di1 WEI Demin1, 2    

  1. 1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640, Guangdong,China;
    2. State Key Laboratory of Subtropical Building Science,Guangzhou 510640,Guangdong,China
  • Received:2017-11-07 Revised:2017-12-12 Online:2018-03-25 Published:2018-03-01
  • Contact: 魏德敏(1955-),女,教授,博士生导师,主要从事工程结构防灾减灾研究 E-mail:dmwei@scut.edu.cn
  • About author:李頔(1986-),男,博士生,主要从事大跨结构抗风研究
  • Supported by:
    Supported by the National Natural Science Foundation of China(51408227) 

摘要: Logistic 映射伪随机数发生器( LM-PRNG) 可用于生成均匀分布的伪随机数,但直 接生成随机数的数据分布均匀性不佳. 为此,文中根据 LM-PRNG 直接生成随机数数据分 布的特性,设计了一种基于直方图优化法的改进 Logistic 伪随机数发生器( ILM-PRNG) , 并利用参数检验、均匀性检验及独立性检验分析了 LM-PRNG 和 ILM-PRNG 的性能. 3 种 数据规模下的测试结果表明: 在显著水平 α = 0. 05 下, LM-PRNG 生成伪随机数序列的一 阶矩在数据规模 N = 103 和 N = 104 时可以通过检验,在 N = 105 时通过检验的比例为 60%,其二阶矩、方差和均匀性在本次实验中均未通过检验,通过独立性检验的样本数占 本次研究样本数的93. 3%; ILM-PRNG 生成的均匀分布伪随机数均通过参数检验、均匀性 检验和独立性检验,其参数性与均匀性均随着生成数据规模的扩大而不断提高,独立性与 数据规模的关系不大; ILM-PRNG 可以克服 LM-PRNG 的不足,生成更良好的均匀分布伪 随机数,是一种性能良好的新型伪随机数发生器. 

关键词: Logistic 映射, 随机数发生器, 直方图均化法, 均匀分布, 统计检验 

Abstract: The logistic map can be used to generate pseudo random numbers. However, the data generated directly cannot take on a good uniformity. Based on the characteristic of random numbers generated directly by the logistics map pseudo random generator (LM-PRNG),an improved pseudo random number generator (ILM-PRNG) is designed based on a histogram homogenization method,and the performance of LM-PRNG and ILM-PRNG is researched by parameters tests,uniform test and unique test. At 0. 05 level,the results of three kinds of number scales show that the first moment of random numbers generated by LM-PRNG can pass the tests when N =103,N = 104 and 60% N = 105. The second moment,variance and uniform failed in the test. 93. 3% of the samples can pass the unique test. Meanwhile, random numbers generated by ILM-PRNG can pass all the tests in this research. The parameter and uniform characters are getting better with the numbers getting larger. As a new kind of PRNG, the ILM-PRNG can overcome the lack of the original logistic generator and can be used to generate uniform pseudo random numbers more satisfactorily. 

Key words: logistic map, pseudo random number generator, histogram equalization, uniform distribution, statistic tests

中图分类号: