华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (3): 68-75.doi: 10.3969/j.issn.1000-565X.2017.03.010

• 计算机科学与技术 • 上一篇    下一篇

基于卷积网络的句子语义相似性模型

黄江平 姬东鸿   

  1. 武汉大学 计算机学院,湖北 武汉 430072
  • 收稿日期:2016-06-12 修回日期:2016-11-28 出版日期:2017-03-25 发布日期:2017-02-02
  • 通信作者: 黄江平( 1985-) ,男,博士生,主要从事自然语言处理、机器学习研究. E-mail:hjp@whu.edu.cn
  • 作者简介:黄江平( 1985-) ,男,博士生,主要从事自然语言处理、机器学习研究.
  • 基金资助:

    国家自然科学基金重点项目( 61133012) ; 国家自然科学基金资助项目( 61173062, 61373108) ; 国家社会科学基金重点项目( 11&ZD189)

Convolutional Network-Based Semantic Similarity Model of Sentences

HUANG Jiang-ping JI Dong-hong   

  1. Computer School,Wuhan University,Wuhan 430072,Hubei,China
  • Received:2016-06-12 Revised:2016-11-28 Online:2017-03-25 Published:2017-02-02
  • Contact: 黄江平( 1985-) ,男,博士生,主要从事自然语言处理、机器学习研究. E-mail:hjp@whu.edu.cn
  • About author:黄江平( 1985-) ,男,博士生,主要从事自然语言处理、机器学习研究.
  • Supported by:
    Supported by the Key Program of National Natural Science Foundation of China( 61133012) , the National Natural Science Foundation of China ( 61173062,61373108 ) and the National Planning Office of Philosophy and Social Science ( 11&ZD189)

摘要: 句子间语义相似性的计算已成为自然语言处理领域的重要研究内容,如何有效地对句子建立语义模型已成为释义识别、文本相似性计算、问答和文本蕴涵等自然语言处理应用的基础任务. 文中提出了一种并行的卷积神经网络模型,该模型的两个卷积网络不仅对句子对中的单个句子建立句子向量表示,还对句子经卷积池化后的特征进行相似性度量,并获得句子间的相似性特征. 采用释义识别及文本相似性两项任务进行模型性能的实验评测,结果显示,该模型能够较好地表示句子语义信息,其释义识别F1值相比基准实验提高了7. 4 个百分点,语义相似性评测的皮尔森相关系数比逻辑回归方法有7. 1 个百分点的提高.

关键词: 卷积网络, 释义识别, 句子模型, 语义相似性

Abstract:

Computing the semantic similarity between two sentences is an important research issue in natural language processing field,and,constructing an effective semantic model of sentences is the core task of natural language processing for paraphrase identification,textual similarity computation,question /answer and textual entailment.In this paper,a parallel convolutional neural network model is proposed to represent sentences with fixedlength vectors,and a similarity layer is used to measure the similarity of sentence pairs.Then,two tasks,namely paraphrase identification and textual similarity test,are used to evaluate the performance of the proposed model.Experimental results show that the proposed model can capture sentence s semantic information effectively; and that,in comparison with the state-of-the-art baseline,the proposed model improves the F1-score in paraphrase identification by 7. 4 percentage points,while in comparison with the logistic regression method,it improves the Pearson correlation coefficient in semantic similarity by 7. 1 percentage points.

Key words: convolutional network, paraphrase identification, sentence model, semantic similarity

中图分类号: