华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (2): 30-38.doi: 10.3969/j.issn.1000-565X.2017.02.005

• 汽车工程 • 上一篇    下一篇

基于遗传算法优化的BP 神经网络侧翻预警算法

曾小华1 李广含1 宋大凤1† 李胜2 朱志成1   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130025; 2. 一汽解放青岛汽车有限公司,山东 青岛 266043
  • 收稿日期:2016-07-07 修回日期:2016-10-13 出版日期:2017-02-25 发布日期:2016-12-31
  • 通信作者: 宋大凤( 1977-) ,女,博士,副教授,主要从事车辆地面力学与底盘电子集成控制研究. E-mail:songdf@126.com
  • 作者简介:曾小华( 1977-) ,男,博士,教授,主要从事混合动力系统研究. E-mail: zeng. xiaohua@126. com
  • 基金资助:

    国家自然科学基金资助项目( 51575221, 51675214) ; 吉林大学研究生创新研究项目( 2016083)

Rollover Warning Algorithm Based on Genetic Algorithm-Optimized BP Neural Network

ZENG Xiao-hua1 LI Guang-han1 SONG Da-feng1 LI Sheng2 ZHU Zhi-cheng1   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,Jilin,China; 2.FAW Jiefang Automotive Co.,Ltd.,Qingdao 266043,Shandong,China
  • Received:2016-07-07 Revised:2016-10-13 Online:2017-02-25 Published:2016-12-31
  • Contact: 宋大凤( 1977-) ,女,博士,副教授,主要从事车辆地面力学与底盘电子集成控制研究. E-mail:songdf@126.com
  • About author:曾小华( 1977-) ,男,博士,教授,主要从事混合动力系统研究. E-mail: zeng. xiaohua@126. com
  • Supported by:
    Supported by the National Natural Science Foundation of China( 51575221, 51675214)

摘要: 针对轮毂液压混合动力重型商用车,引入基于遗传算法优化的BP 神经网络算法建立侧翻预警控制策略. 首先,建立重型车辆3 自由度侧翻参考模型,选取车辆侧翻预警
算法的侧翻指标,并结合参考模型建立侧翻指标观测器; 然后,在传统TTR( Time-To-Rollover)侧翻预警算法研究的基础上,引入遗传算法优化的BP 神经网络( GANN) 对传统的TTR 预警算法进行优化,建立基于GANN-TTR 的侧翻预警算法; 最后,利用TruckSim 仿真软件建立整车模型,利用AMESim 仿真软件建立轮毂液压系统模型,在Matlab /Simulink环境下实现侧翻预警算法,并通过Matlab /Simulink、Trucksim 和AMESim 三软件搭建联合仿真平台,选取阶跃转向和鱼钩转向两种典型工况进行仿真,对比传统TTR、传统BP 神经网络以及基于GANN-TTR 的侧翻预警算法的预警精度. 仿真结果表明,基于GANNTTR的侧翻预警算法能够有效提高预警精度,通过方向盘转角和纵向车速进行算法修正后得到的曲线与理想预警曲线误差最小达5%.

关键词: 重型车辆, 侧翻预警算法, 预警精度, 遗传算法, BP 神经网络

Abstract:

Proposed in this paper is a rollover warning control strategy based on the genetic algorithm-optimized BP neural network ( GANN) for hydraulic in-wheel motor hybrid heavy truck.In the investigation,first,a rollover reference model of the heavy truck with three degrees of freedom was established,and the rollover warning indicator was selected.Next,based on the rollover reference model,an observer of rollover warning indicator was presented.Then,a new rollover warning algorithm named GANN-TTR was proposed by introducing genetic algorithm-optimized BP neural network to optimize the traditional TTR ( Time-To-Rollover) algorithm.Moreover,a system model was conducted on the Trucksim platform,a hydraulic system model was presented on the AMESim platform,and a rollover warning algorithm was achieved on the Matlab /Simulink platform.Finally,a co-simulation platform was constructed on the basis of Matlab /Simulink,AMESim and Trucksim platforms to simulate the truck under step steering and hook steering conditions,and the warning precision of the traditional TTR algorithm,the BP algorithm and the proposed GANN-TTR algorithm were compared.Simulated results show that,with the proposed GANN-TTR rollover warning algorithm,the warning precision effectively improves,and the minimum error between the revised warning curve obtained through vertical velocity and driver steering angle and the ideal warning curve is low to 5%.

Key words: heavy truck, rollover warning algorithm, warning precision, genetic algorithm, BP neural network

中图分类号: