华南理工大学学报(自然科学版) ›› 2004, Vol. 32 ›› Issue (6): 67-70,79.doi: 1000-565X(2004)06-0067-04

• • 上一篇    下一篇

基于神经网络的交叉口多相位模糊控制

许伦辉1 衷路生2 徐建闽1   

  1. 1. 华南理工大学交通学院 广东 广州 510640;2. 南方冶金学院机电工程学院 江西 赣州 341000

  • 收稿日期:2003-08-27 出版日期:2004-06-20 发布日期:2015-09-09
  • 通信作者: 许伦辉(1965-),男,教授,硕士生导师,主要从事最优控制、智能控制、交通工程的研究。 E-mail:azhong2001343@sohu.com
  • 作者简介:许伦辉(1965-),男,教授,硕士生导师,主要从事最优控制、智能控制、交通工程的研究。
  • 基金资助:
    国家自然科学基金资助项目(60064001);广东省自然科学基金资助项目(20011707)

Multi-phase Fuzzy Control of Intersections Based on Neural Network

Xu Lun-hui1 Zhong Lu-sheng2 Xu Jian-min1   

  • Received:2003-08-27 Online:2004-06-20 Published:2015-09-09
  • Contact: 许伦辉(1965-),男,教授,硕士生导师,主要从事最优控制、智能控制、交通工程的研究。 E-mail:azhong2001343@sohu.com
  • About author:许伦辉(1965-),男,教授,硕士生导师,主要从事最优控制、智能控制、交通工程的研究。

摘要: 根据城市交叉口交通流的特点,给出了一种交叉口多相位自适应控制算法,综合考虑相邻车道上的车队长度,利用多层BP神经网络实现了道路交叉口多相位模糊控制.仿真结果表明,文中所设计的模糊神经网络控制器能有效地减少单交叉口平均车辆延误,具有较强的学习和泛化能力,是实现交通系统智能控制的一条新途径.

关键词: 交通控制, 模糊控制, 神经网络, BP学习算法, 车辆平均延误

Abstract:

According to the features of traffic flow in urban intersections, a multi-phase self-adaptive control algorithm was proposed. Multi-layer BP neural network was used to realize the multi-phase fuzzy control in road intersections by taking the queue length on contiguous phase lanes into account. Simulation results show that, as a new method of the intelligent control of traffic system, the proposed fuzzy neural network controller can decrease the average vehicle delay in single intersections and it possesses excellent learning and generating abilities.

Key words:

中图分类号: