华南理工大学学报(自然科学版) ›› 2004, Vol. 32 ›› Issue (4): 92-96.

• • 上一篇    下一篇

非线性弹性杆中的孤波解及其数值分析

韩强 郑向峰   

  1. 华南理工大学 交通学院‚广东 广州510640
  • 收稿日期:2003-04-22 出版日期:2004-04-20 发布日期:2015-09-08
  • 通信作者: 韩强(1963 )‚男‚博士后‚教授‚主要从事弹塑性动力学、非线性动力学研究. E-mail:emqhan@scut.edu.cn
  • 作者简介:韩强(1963 )‚男‚博士后‚教授‚主要从事弹塑性动力学、非线性动力学研究.
  • 基金资助:
     国家自然科学基金资助项目(10272046);广东省自然科学基金资助项目(020858)

Solitary Wave Solution and Its Numerical Analysis in a Nonlinear Elastic Bar

Han Qiang Zheng Xiang-feng   

  1. College of Traffic and Communications‚South China Univ.of Tech.‚Guangzhou510640‚Guangdong‚China
  • Received:2003-04-22 Online:2004-04-20 Published:2015-09-08
  • Contact: 韩强(1963 )‚男‚博士后‚教授‚主要从事弹塑性动力学、非线性动力学研究. E-mail:emqhan@scut.edu.cn
  • About author:韩强(1963 )‚男‚博士后‚教授‚主要从事弹塑性动力学、非线性动力学研究.

摘要: 推导了非线性弹性杆中波动方程的一般形式‚采用修正的完全近似法‚得到了孤波的渐近解‚并对其进行了数值分析‚发现了钟状和振荡型两种孤波.理论和数值分析表明‚孤波是由材料非线性和杆的横向效应相互作用引起的‚其传播速度与波幅有关‚波幅越大‚波传播速度越大;波宽与波速的平方根成反比‚波速越大‚波宽越窄;波宽与表征波的弥散效应的量有关.

关键词: 非线性弹性杆, 孤波, KdV-mKdV 方程, 数值分析

Abstract: The general form of the nonlinear wave equation in a nonlinear elastic bar was derived.An asympto-tic solution of the solitary wave was obtained by means of the modified complete-approximate method and was numerically analyzed‚from which two kinds of solitary waves—the bel- l type solitary wave and the oscillatory-type solitary wavewere found.Theoretical and numerical analyses indicate that the solitary wave is caused by the action of the material nonlinearity and the lateral effect of the bar‚and that the propagation velocity of the solitary wave is related to its amplitude‚i.e.the larger the amplitude is‚the larger the propagation velocity is;and that the wave width is of inverse ratio with the square root of wave propagation velocity and is related to the parameter indicating the dispersion effect of the wave—the larger the propagation velocity is‚the shorter the wave width is.

Key words: nonlinear elastic bar, solitary wave, KdV-mKdV equation, numerical analysis

中图分类号: