华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (5): 86-91.doi: 10.3969/j.issn.1000-565X.2015.05.014

• 计算机科学与技术 • 上一篇    下一篇

双目标精英策略的三维人脸表情特征筛选及识别

胡步发 黄首宁   

  1. 福州大学 机械工程及自动化学院,福建 福州 350116
  • 收稿日期:2014-12-08 修回日期:2015-01-10 出版日期:2015-05-25 发布日期:2015-05-07
  • 通信作者: 胡步发(1963-),男,博士,副教授,主要从事机器视觉、图像处理与模式识别研究. E-mail:hubufa@21cn.com
  • 作者简介:胡步发(1963-),男,博士,副教授,主要从事机器视觉、图像处理与模式识别研究.
  • 基金资助:

    福建省自然科学基金资助项目(2012J01260)

Selection and Recognition of 3D Facial Expression Feature Based on Bi-Objective Elitist Strategy

Hu Bu-fa Huang Shou-ning   

  1. College of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350116,Fujian,China
  • Received:2014-12-08 Revised:2015-01-10 Online:2015-05-25 Published:2015-05-07
  • Contact: 胡步发(1963-),男,博士,副教授,主要从事机器视觉、图像处理与模式识别研究. E-mail:hubufa@21cn.com
  • About author:胡步发(1963-),男,博士,副教授,主要从事机器视觉、图像处理与模式识别研究.
  • Supported by:
    Supported by the Natural Science Foundation of Fujian Province(2012J01260)

摘要: 非支配遗传算法(NSGA-Ⅱ)对双目标的特征筛选可以取得很好的效果,但该算法在优化过程中会出现局部收敛和早熟问题. 为此,文中提出了改进的 NSGA-Ⅱ特征筛选算法:先对父代种群运行第 1 次精英策略,从中筛选出父代精英种群;然后将筛选后的父代精英种群与子代种群构成联合种群,并对联合种群运行第 2 次精英策略获得下一父代种群. 在利用文中算法对三维人脸表情的候选特征进行筛选后,通过概率神经网络算法对筛选特征进行分类识别. 结果表明,文中算法可以在很大程度上解决传统 NSGA-Ⅱ的局部收敛和早熟问题,并能有效地提升表情识别的准确性.

关键词: 非支配遗传算法, 特征筛选, 三维模型, 表情识别, 概率神经网络

Abstract: Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) works effectively in selecting bi-objective fea-tures,but may result in local convergence and prematurity in the process of optimization. In order to solve this problem,an improved NSGA-Ⅱ feature selection algorithm is proposed. In this algorithm,firstly,the first elite strategy is operated to select the elite population from parent population. Secondly,the selected parent elite popu-lation is combined with the offspring population to form a combined population. Finally,the second elite strategy is executed to obtain the next parent population. After the selection of 3D face expression candidate features,the selected features are classified by means of probabilistic neural network. Experimental results show that the pro-posed algorithm improves the performance of NSGA-Ⅱ with local convergence and prematurity problems greatly and increases the accuracy of facial expression recognition effectively.

Key words: non-dominated sorting genetic algorithm, feature selection, three-dimension model, expression re-cognition, probabilistic neural network

中图分类号: