华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (5): 114-119.doi: 10.3969/j.issn.1000-565X.2015.05.018

• 计算机科学与技术 • 上一篇    下一篇

基于 JointBoost I2C 距离度量的图像分类方法

李子龙 刘伟铭   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2014-05-06 修回日期:2014-11-21 出版日期:2015-05-25 发布日期:2015-05-07
  • 通信作者: 李子龙(1979-),男,在职博士生,徐州工程学院讲师,主要从事智能交通、图像处理与模式识别研究. E-mail:ong-taizi1979@gmail.com
  • 作者简介:李子龙(1979-),男,在职博士生,徐州工程学院讲师,主要从事智能交通、图像处理与模式识别研究.
  • 基金资助:
    国家自然科学基金资助项目(50978106,60273064);江苏省高校自然科学研究项目(14KJB520038,13KJD510007)

Image Classification Based on JointBoost I2C Distance Metric

Li Zi-long Liu Wei-ming   

  1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2014-05-06 Revised:2014-11-21 Online:2015-05-25 Published:2015-05-07
  • Contact: 李子龙(1979-),男,在职博士生,徐州工程学院讲师,主要从事智能交通、图像处理与模式识别研究. E-mail:ong-taizi1979@gmail.com
  • About author:李子龙(1979-),男,在职博士生,徐州工程学院讲师,主要从事智能交通、图像处理与模式识别研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China(50978106,60273064)and the Natural Science Foundation of Jiangsu Higher Education Institutions of China(14KJB520038,13KJD510007)

摘要: 基于图像到类(I2C)距离度量的图像分类是一种新颖的方法,但其分类性能仍有待提高. 为此,文中提出了一种基于 JointBoost I2C 距离度量的图像分类方法. 首先生成原型特征集,该集合中的样本具有代表性,故计算测试图像到该原型特征集的距离更有效;然后根据 JointBoost 算法的思想,联合多个 I2C 距离度量生成一个强分类器,并将空间信息融合到强分类器中. 实验结果表明,该方法在图像分类实验中具有更高的分类性能.

关键词: 图像分类, JointBoost, 图像到类距离, 原型特征集

Abstract: Image classification on the basis of image-to-class (I2C) distance metric is a novel method. However,its classification performance needs to be further improved. In this paper,a new image classification method on the basis of JointBoost I2C distance metric is proposed. In this method,a prototype feature set with representative sam-ples is generated,which makes the calculation of distance from the test image to the set more effective. Then,on the basis of JointBoost algorithm,multiple I2C distance metrics are combined to generate a strong classifier for in-tegrating spatial information. Experimental results show that the proposed method is of higher performance for image classification.

Key words: image classification, JointBoost, image to class distance, prototype feature set