华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (1): 72-78.doi: 10.3969/j.issn.1000-565X.2015.01.012

• 计算机科学与技术 • 上一篇    下一篇

改进的几何活动轮廓演化及其在目标跟踪中的应用

宋佳声1,2 胡国清1 焦亮1   

  1. 1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640 ; 2. 集美大学 轮机工程学院, 福建 厦门 361021
  • 收稿日期:2014-06-03 修回日期:2014-08-08 出版日期:2015-01-25 发布日期:2014-12-01
  • 通信作者: 宋佳声(1976-),男,博士,集美大学讲师,主要从事图像处理与智能系统研究 . E-mail:soongjs@gmail.com
  • 作者简介:宋佳声(1976-),男,博士,集美大学讲师,主要从事图像处理与智能系统研究 .
  • 基金资助:
    福建省教育厅科研项目( JA14175)

Improved Evolution of Geodesic Active Contour and its Application to Target Tracking

Song Jia-sheng1,2 Hu Guo-qing1 Jiao Liang1   

  1. 1. School of Mechanical and Automotive Engineering , South China University of Technology , Guangzhou 510640 , Guagndong ,China ; 2. Marine Engineering Institute , Jimei University , Xiamen 361021 , Fujian , China
  • Received:2014-06-03 Revised:2014-08-08 Online:2015-01-25 Published:2014-12-01
  • Contact: 宋佳声(1976-),男,博士,集美大学讲师,主要从事图像处理与智能系统研究 . E-mail:soongjs@gmail.com
  • About author:宋佳声(1976-),男,博士,集美大学讲师,主要从事图像处理与智能系统研究 .
  • Supported by:
    Supported by the Science Foundation of Fujian Educational Committee ( JA14175 )

摘要: 为提高几何活动轮廓分割算法的分割效率和准确性,设计了新的边缘检测与跟踪算法 . 首先采用矢量图像计算图像的梯度值,并设计能够自适应调整阈值的边缘指示函数,进而提出改进的变分水平集演化模型;然后设计基于该改进模型的边缘检测算法,并在无迹卡尔曼滤波器框架下设计了运动目标的跟踪算法 . 实验结果表明,文中算法不但显著地提高了轮廓演化模型的灵活性和收敛速度,而且对阴影、遮挡、目标形变和背景干扰等具有较好的鲁棒性 .

关键词: 几何活动轮廓, 水平集方法, 目标跟踪, 无迹卡尔曼滤波器

Abstract: In order to improve the efficiency and accuracy of geometric active contour model-based segmentation algorithm, a novel edge detection and tracking algorithm is presented. Firstly, the gradient of an image is calculated according to vector image, and an edge indicator with adaptive threshold is proposed. Secondly, an improved evolution model using variational level set is put forward. Then, on the basis of this model, an improved edge detection algorithm is proposed, and a target tracking algorithm is designed in the framework of unscented Kalman filter. Experimental results demonstrate that the proposed algorithm not only increases the convergence rate and flexibility of active contour evolution model significantly but also possesses strong robustness to such interferences as shadow, occlusion, object deformation and background interference.

Key words: geodesic active contour, level set method, target tracking, unscented Kalman filter

中图分类号: