华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (7): 67-73.

• • 上一篇    下一篇

基于ARMA的汽轮机转子振动故障序列的预测

吴庚申1 梁 平1 龙新峰2   

  1. 1.华南理工大学 电力学院,广东 广州 510640;2.华南理工大学 强化传热与过程节能教育部重点实验室,广东 广州 510640
  • 收稿日期:2004-09-01 出版日期:2005-07-25 发布日期:2005-07-25
  • 通信作者: 吴庚申(1980-),男,在职硕士生,主要从事传热与节能、汽轮机转子振动故障诊断与预测的研究. E-mail:wu80@ tom.com
  • 作者简介:吴庚申(1980-),男,在职硕士生,主要从事传热与节能、汽轮机转子振动故障诊断与预测的研究.
  • 基金资助:

    广东省自然科学基金资助项目(020875)

Forecasting of Vibration Fault Series of Stream Turbine Rotor Based on ARMA

Wu Geng-shen1  Liang Ping1  Long Xin-feng2   

  1. 1.College of Electric Power,South China Univ.of Tech.,Guangzhou 510640,Guangdong,China;2.Key Laboratory of Enhanced Heat Tran sfer and Energy Conservation of the Ministry of Education,South China Univ.of Tech.,Guangzhou 510640,Guangdong,China
  • Received:2004-09-01 Online:2005-07-25 Published:2005-07-25
  • Contact: 吴庚申(1980-),男,在职硕士生,主要从事传热与节能、汽轮机转子振动故障诊断与预测的研究. E-mail:wu80@ tom.com
  • About author:吴庚申(1980-),男,在职硕士生,主要从事传热与节能、汽轮机转子振动故障诊断与预测的研究.
  • Supported by:

    广东省自然科学基金资助项目(020875)

摘要: 汽轮机转子振动系统是一个确定性复杂系统,振动序列由多种频率成分的分量复合而成,建立尽可能完整与精确的系统振动数学模型是提取故障征兆信息及故障预测的保证.文中根据Bently实验台所采集的碰摩、松动、不对中和不平衡四种典型汽轮机转子振动故障水平方向与垂直方向的数据,剔除趋势项及周期项,所余的随机平稳噪声项经平稳性检验后,建立了汽轮机转子振动故障序列自回归滑移平均(ARMA)模型.计算结果表明,所建立的8个汽轮机转子振动故障ARMA模型一个半周期的预测值的平均误差均小于0.55μ m,确定性因子r2 均大于0.991 5,具有较高的预测精度,为进一步提取故障征兆信息及故障发展趋势预测提供了条件.

关键词: 汽轮机转子, 振动故障, 预测, 自回归滑移平均模型

Abstract:

The vibration system of the steam turbine rotor is a definite complex system ,the vibration sequence of which consists of many kinds of frequency components.An integrated and accurate mathematical model is important to the extraction of fault premonition information and the forecasting of faults.In this paper,according to the data in both the horizontal direction and the vertical direction of four typical faults,such as rubbing,loosing,uncountershaft and mass unbalance collected from the Bently experimental set,a ARMA(AutoRegression Moving Average)
model is built up for the vibration fault series after the stable examination of the random stationary noise item in which both the tendency and periodicity items ale removed.The calculated results indicate that the mean errors of 8 forecasted vibration faults of turbine rotor in half period obtained by the ARMA model are all less than 0.55 ixm,and the determ inistic factors r are all more than 0.99 1 5.This means that the proposed method is of great forecas.ting precision and is effective in the further extraction of fault symptom inform ation and the further forecasting of the developing trend of vibration faults.

Key words: stream turbine rotor, vibration fault, forecasting, ARMA model