华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (3): 117-121.

• 土木建筑工程 • 上一篇    下一篇

专虑环境因素影响的动态法桥梁损伤识别

胡利平 韩大建   

  1. 华南理工大学 土木工程系,广东 广州 510640
  • 收稿日期:2006-06-13 出版日期:2007-03-25 发布日期:2007-03-25
  • 通信作者: 胡利平(1971),男,博士生,高级工程师,主要从事桥梁检测与施工监控研究. E-mail:hlpI2@163.com
  • 作者简介:胡利平(1971),男,博士生,高级工程师,主要从事桥梁检测与施工监控研究.

Vibration-Based Damage Detection of Bridges Considering Inf1uence of Changing Environment

Hu Li-ping  Han Da-pan   

  1. Dept. of Civil Engineering , South China Univ. of Tech. , Guangzhou 510640 , Guangdong , China
  • Received:2006-06-13 Online:2007-03-25 Published:2007-03-25
  • Contact: 胡利平(1971),男,博士生,高级工程师,主要从事桥梁检测与施工监控研究. E-mail:hlpI2@163.com
  • About author:胡利平(1971),男,博士生,高级工程师,主要从事桥梁检测与施工监控研究.

摘要: 如何考虑因环境条件变化而引起的结构动力特性的变异性是动态法桥梁损伤识别中的一个难点.文中利用非线性主成分分析技术,提出一种新的桥梁结构损伤识别方法.首先通过构建自联想神经网络对无损结构在不同环境条件下识别得到的羊元刚度样本集作非线性主成分分析,建立反映环境因素影响的非线性变换模式.然后,将未知状态结构在不同环境条件下识别得到的羊元刚度样本集输入所构建的网络,通过对网络输出与目标间的网络输出残差作统计分析,实现损伤识别与定位.最后以一庄简支梁桥为例进行数值仿真分析,验证了所提出方法的有效性.

关键词: 损伤识别, 环境影响, 非线性主成分分析, 神经网络

Abstract:

In the vibration-based damage detection of bridges , it is difficult to avoid the uncertainty of the dynamic behaviour caused by changing environmental conditions. In order to overcome this difficulty , a novel damage detec-tion methodology for bridges is proposed based on the nonlinear principal component analysis. In this methodology ,first , an auto-associative neural network is constructed to caπY out a nonlinear principal component analysis for the element stiffness samples identified from healthy structure in various environmental conditions , and a nonlinear transformation mode that reveals the environmental influences is created. Then , the element stiffness samples ob-tained from an unknown state in various environmental conditions are inputted into the constructed network. Thus ,damages can be detected and located via the statistical analysis of the residual errors between the network outputs and the targets. The proposed methodology is finally verified by the numerical simulation of a simply-supported bridge.

Key words: damage detection, environmental influence, nonlinear principal component analysis, neural network