华南理工大学学报(自然科学版)

• 海洋材料与腐蚀防护 • 上一篇    下一篇

金属铜气液界面腐蚀的元胞自动机模拟研究

陈宏霞1,2 荣统陟1 李佳伟1 贝守航1 吕庆超1   

  1. 1.华北电力大学 能源动力与机械工程学院, 北京 102206;

    2. 华北电力大学 电站能量转换与系统教育部重点实验室,北京 102206

  • 出版日期:2025-08-22 发布日期:2025-08-22

Cellular Automata Simulation on the Gas-liquid Interface Corrosion of Copper

CHEN Hongxia1,2  RONG Tongzhi1  LI Jiawei1  BEI Shouhang1  LÜ Qingchao1   

  1. 1.School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;

    2.China Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, North China Electric Power University, Beijing 102206, China



  • Online:2025-08-22 Published:2025-08-22

摘要:

金属在气液两相交界区域的腐蚀,因界面处的高密度粒子分布及复杂的物理化学性质,相较于单相全浸泡腐蚀具有其特殊性;由于实验研究难于准确界定区域界限并进行局部监测,致使气液界面腐蚀相关研究相对匮乏。基于氯化钠溶液与氧气在界面处粒子的准确分布,结合实际腐蚀进程中的化学反应机制、酸性自催化机制、沉积物阻挡机制,为不同粒子赋予差异化的反应概率与规则,建立金属铜气液界面二维元胞自动机腐蚀模型。对比分析不同浸润角下金属铜界面区腐蚀反应动力学过程、稳定后腐蚀坑深及产物分布规律,证明金属铜界面腐蚀区域可分为由氯、氧共同控制的扩散区及由氯离子主导控制的薄液膜区;当浸润角从72°减小到18°时,金属界面区域面积增大为3.2倍,界面区溶氧量也相应成倍增多;对比薄液膜区和扩散区腐蚀差异,获得浸润角18°时扩散区的氧气腐蚀为界面腐蚀的主要控制机制,浸润角为27°和45°时薄液膜区内氯腐蚀为主要控制机制,而在大浸润角(63°、72°)时为氯氧共同控制,揭示金属铜气液界面区域内腐蚀严重的机理为液相腐蚀离子及气相溶氧的双向聚集。同时对坑内H+含量进行监测,证明伴随H+的产生及金属自催化反应,浸润角为18°的金属铜界面腐蚀面积最大、周期最长、最为严重。

关键词: 气液界面, 元胞自动机, 界面腐蚀, 浸润角, 析氢

Abstract:

Metal`s Corrosion at the gas-liquid interface exhibits unique characteristics compared to single-phase immersion corrosion due to the high density of particles at the interface and the complex physical and chemical properties. However, it is difficult to accurately define the interface boundary and conduct localized monitoring in experimental studies, leading to a relative lack of research on corrosion at the gas-liquid interface. Based on the accurate distributing sodium chloride solution and oxygen to the interface, considering the chemical reaction mechanisms, acidic autocatalytic mechanisms, and deposit blocking mechanisms in actual corrosion processes, this study assigns different reaction rules and corresponding probabilities to particles, establish a two-dimensional cellular automaton corrosion model of the gas-liquid interface of metal-copper. By analyzing the corrosion kinetics, corrosion pit depth and product distribution in the metal-copper interfacial zone, and comparing the metal-copper with different contact angles, the results show that the metal-copper interfacial corrosion zone can be divided into a diffusion zone controlled by both chlorine and oxygen, and a thin liquid-film zone dominated by chloride ions. When the contact angle decreases from 72° to 18°, the area of the interface region increases by 3.2 times, as well as the dissolved oxygen. By comparing the corrosion in thin liquid film zone and the diffusion zone, it is found that oxygen corrosion in the diffusion zone is the primary control mechanism at the contact angle of 18°; at contact angles of 27° and 45°, chlorine corrosion in the thin liquid film zone is the primary control mechanism; while, chlorine and oxygen jointly control the corrosion process at large contact angles (63° and 72°), which reveals that the mechanism of severe corrosion in the metal-copper gas-liquid interface region is the bidirectional aggregation of liquid-phase corrosive ions and gas-phase dissolved oxygen. Simultaneously, monitoring of H+ concentration within the pits demonstrated that, accompanied by H+ generation and metal autocatalytic reactions, the metal-copper interface with a contact angle of 18° shows the largest corrosion area, the longest corrosion cycle, and most severe corrosion.

Key words: gas-liquid interface, cellular automata, interfacial corrosion, contact angle, hydrolysis