华南理工大学学报(自然科学版)

• 材料科学与技术 • 上一篇    下一篇

X射线断层扫描技术在先进材料前沿研究中的应用:以结构材料与新能源材料为例

崔洁1 桂艳2 张成毅1 杨贤锋1   

  1. 1. 华南理工大学 分析测试中心,广东 广州 510640;

    2. 广州番禺职业技术学院,广东 广州 511483

  • 发布日期:2025-09-05

Application of X-Ray Computed Tomography in Frontier Research of Advanced Materials: Examples of Structural and New Energy Materials

CUI Jie¹GUI Yan²ZHANG Chengyi¹YANG Xianfeng¹   

  1. 1. Analical and Testing Center, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. Guangzhou Panyu Polytechnic, Guangzhou 511483, Guangdong, China

  • Published:2025-09-05

摘要:

作为一种先进的无损三维成像检测技术,X射线计算机断层扫描(CT)可实现样品内部结构的可视化表征。其技术基于X射线与物质的相互作用机制,通过采集X射线穿透样品后的信号成像,再以计算机算法处理获取的断层图像,最终实现对样品的三维重构。凭借高密度分辨率、便捷的数字化处理等优势,该技术已在医学诊断、工业检测等领域取得重大突破。在材料科学领域,X射线CT技术的价值尤为凸显:它不仅能够实现结构材料内部缺陷(如孔隙、裂纹等)的原位三维定量分析,还可动态追踪材料在载荷、腐蚀等复杂环境下的损伤演化过程;通过多尺度(从纳米到厘米级)、多模态(形貌、成分、取向等)的协同表征,能有效揭示新能源材料的构效关系,为催化剂设计与电池优化提供重要依据。本文系统梳理X射线CT技术的核心原理,聚焦其在结构材料与新能源材料中的前沿应用,结合具体案例分析技术优势与现存瓶颈,并展望未来突破路径。这些探讨不仅为科研人员提供技术创新方向,更助力提升我国高端检测设备的自主研发能力,对增强核心竞争力具有重大战略意义。

关键词: X射线计算机断层扫描, 三维成像, 检测技术, 结构材料, 新能源

Abstract:

As an advanced non-destructive three-dimensional (3D) imaging detection technique, X-ray Computed Tomography (CT) enables the visualization of internal structures within samples. It operates based on the interaction mechanisms between X-rays and matter, integrated with sophisticated computed tomography principles. Through detectors, it captures signals transmitted through the sample, which are subsequently processed via algorithms to reconstruct tomographic images for imaging purposes. Endowed with advantages such as high-density resolution and facile digital processing, this technology has achieved significant breakthroughs in domains including medical diagnosis and industrial inspection.  In the field of materials science, the value of X-ray CT technology is particularly pronounced: it not only facilitates in-situ 3D quantitative analysis of internal defects (e.g., pores, cracks) in structural materials but also dynamically tracks the damage evolution processes of materials under complex environments such as loading and corrosion. Via multi-scale (ranging from nanoscale to centimeter-scale) and multi-modal (including morphology, composition, and orientation) collaborative characterization, it can effectively unravel the structure-activity relationships of new energy materials, thereby providing crucial foundations for catalyst design and battery optimization.  This paper systematically synthesizes the core principles of X-ray CT technology, focuses on its frontier applications in structural materials and new energy materials, analyzes technical strengths and existing bottlenecks with specific case studies, and envisions future breakthrough pathways. These explorations not only offer directions for technological innovation to researchers but also contribute to enhancing the independent research and development capabilities of China's high-end detection equipment, holding significant strategic importance for strengthening core competitiveness.

Key words: X-ray computed tomography, three-dimensional imaging, detection technology, structural materials, new energy