华南理工大学学报(自然科学版)

• 电子、通信与自动控制 • 上一篇    下一篇

基于自复位遗传粒子滤波的UWB/INS室内定位方法

杨永辉1  李智贤2  王敏蕙3  许函铭1  陈颖聪1  文尚胜1   

  1. 1.华南理工大学 材料科学与工程学院,广东 广州 510640;

    2.东北大学 机械工程与自动化学院,辽宁 沈阳 110167;

    3.北京师范大学-香港浸会大学联合国际学院, 广东 珠海 519087

  • 发布日期:2025-05-20

UWB/INS Indoor Localization Method Based on Self-Resetting Genetic Particle Filter

YANG Yonhui1  LI Zhixian2  WANG Minhui3  XU Hanming1  CHEN Yingcong1  WEN Shangsheng1   

  1. 1. School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110167, Liaoning, China;

    3. Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, Guangdong, China

  • Published:2025-05-20

摘要:

超宽带(UWB)技术作为新一代室内定位技术的典范,在实际应用时常结合惯性导航系统(INS)优化定位中的非视距误差(NLOS)问题。但集中式信息处理方法无法有效区分NLOS误差来源,导致定位锚点出现冗余,造成信息浪费及成本提高。针对室内定位中的非视距误差识别和剔除问题,本文提出一种基于自复位遗传粒子滤波(SGPF)的UWB/INS室内定位方法,该方法以SGPF算法为媒介通过INS系统估计值对测量值中的NLOS误差溯源,提高了NLOS环境下的跟踪稳定性。首先,通过对物理锚点进行分组并配合虚拟锚点划分似然区域;再由NLOS误差识别策略通过INS系统的初步估计确定高概率区域并剔除NLOS锚点组与测量值;最后结合有效粒子数判别粒子集状态考虑是否启用遗传重采样优化粒子集多样性,提升算法鲁棒性。SGPF算法融合了标准粒子滤波和遗传算法两种算法的结构,可有效缓解粒子退化和贫化问题,在更低的粒子数与时耗下达到更高的鲁棒性。实验表明,在视距环境下SGPF算法只需PF算法30%的粒子数便可达到标准粒子滤波的定位效果且时耗远低于传统遗传粒子滤波。在非视距环境下,SGPF算法的平均定位误差为0.0552m,相比于传统粒子滤波与传统遗传粒子滤波分别提高了56.97%与48.94%。

关键词: 粒子滤波, 遗传算法, 自适应, 室内定位

Abstract:

Ultra wideband (UWB) technology, as a model of the new generation of indoor positioning technology, is often combined with inertial navigation systems (INS) to optimize the non line of sight error (NLOS) problem in positioning in practical applications. However, centralized information processing methods cannot effectively distinguish the sources of NLOS errors, resulting in redundant positioning anchor points, information waste, and increased costs. This paper proposes a UWB/INS indoor positioning method based on self resetting genetic particle filter (SGPF) to address the problem of non line of sight error identification and elimination in indoor positioning. The method uses the SGPF algorithm as a medium to trace the NLOS error in the measured values through INS system estimation, improving the tracking stability in NLOS environment. Firstly, by grouping physical anchor points and combining them with virtual anchor points to partition likelihood regions; Then, the NLOS error identification strategy is used to preliminarily estimate the high probability areas through the INS system and eliminate the NLOS anchor group and measurement values; Finally, considering whether to enable genetic resampling to optimize the diversity of the particle set and improve the robustness of the algorithm based on the effective number of particles to determine the state of the particle set. The SGPF algorithm combines the structures of standard particle filtering and genetic algorithm, which can effectively alleviate the problems of particle degradation and impoverishment, and achieve higher robustness with lower particle count and time consumption. Experiments have shown that in line of sight environments, the SGPF algorithm only requires 30% of the particle count of the PF algorithm to achieve the positioning effect of standard particle filtering, and the time consumption is much lower than that of traditional genetic particle filtering. In non line of sight environments, the average positioning error of SGPF algorithm is 0.0552m, which is 56.97% and 48.94% higher than traditional particle filtering and traditional genetic particle filtering, respectively.

Key words: particle filtering, genetic algorithm, adaptive, indoor positioning